Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a18, author = {D. V. Goryashin and S. A. Gritsenko}, title = {On the diophantine inequalities with prime numbers}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {325--334}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a18/} }
D. V. Goryashin; S. A. Gritsenko. On the diophantine inequalities with prime numbers. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 325-334. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a18/
[1] Voronin, S. M., Karatsuba, A. A., The Riemann zeta function, FML, M., 1994 (Russian) | MR
[2] Baker R. C., Harman G., Pintz J., “The difference between consecutive primes, II”, Proc. London Math. Soc., 83:3 (2001), 532–562 | DOI | MR | Zbl
[3] Karatsuba, A. A., Fundamentals of the analytic number theory, Second edition, Nauka, M., 1983, 240 pp. (Russian) | MR
[4] Montgomery H. L., Vaughan R. C., “The exceptional set in Goldbach's problem”, Acta Arith., 27 (1975), 353–370 | DOI | MR | Zbl
[5] Huxley M. N., “On the difference between consequtive primes”, Invent. Math., 15:1 (1972), 164–170 | MR | Zbl
[6] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, John Wiley Sons, New York etc., 1985 | MR | Zbl
[7] Gir'ko, V. V., Gritsenko, S. A., “On a diophantine inequality with primes”, Chebyshevskii sbornik, 7:4 (2006), 26–30 (In Russian) | MR | Zbl
[8] Wilson B. M., “Proofs of some formulae enunciated by Ramanujan”, Proc. Lond. Math. Soc., s2-21 (1922), 235–255 | MR