On the diophantine inequalities with prime numbers
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 325-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with two problems of approximating a given positive number $N$ by the sum of two primes, and by the sum of a prime and two squares of primes. In 2001, R. Baker, G. Harman, and J. Pintz proved for the number of solutions of the inequality $|p-N|\leqslant H$ in primes $p$ a lower bound for $H\geqslant N^{21/40+\varepsilon}$, where $\varepsilon$ is an arbitrarily small positive number. Using this result and the density technique, in this paper we prove a lower bound for the number of solutions of the inequality $|p_1+p_2-N| \leqslant H$ in prime numbers $p_1$, $p_2$ for $H\geqslant N^{7/80+\varepsilon}$. Also based on the density technique, we prove a lower bound for the number of solutions of the inequality $\left|p_1^2+p_2^2+p_3-N\right| \leqslant H$ in prime numbers $p_1$, $p_2$ and $p_3$ for $H\geqslant N^{7/72+\varepsilon}$.
Keywords: diophantine inequalities, prime numbers, density theorems.
@article{CHEB_2023_24_4_a18,
     author = {D. V. Goryashin and S. A. Gritsenko},
     title = {On the diophantine inequalities with prime numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {325--334},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a18/}
}
TY  - JOUR
AU  - D. V. Goryashin
AU  - S. A. Gritsenko
TI  - On the diophantine inequalities with prime numbers
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 325
EP  - 334
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a18/
LA  - ru
ID  - CHEB_2023_24_4_a18
ER  - 
%0 Journal Article
%A D. V. Goryashin
%A S. A. Gritsenko
%T On the diophantine inequalities with prime numbers
%J Čebyševskij sbornik
%D 2023
%P 325-334
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a18/
%G ru
%F CHEB_2023_24_4_a18
D. V. Goryashin; S. A. Gritsenko. On the diophantine inequalities with prime numbers. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 325-334. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a18/

[1] Voronin, S. M., Karatsuba, A. A., The Riemann zeta function, FML, M., 1994 (Russian) | MR

[2] Baker R. C., Harman G., Pintz J., “The difference between consecutive primes, II”, Proc. London Math. Soc., 83:3 (2001), 532–562 | DOI | MR | Zbl

[3] Karatsuba, A. A., Fundamentals of the analytic number theory, Second edition, Nauka, M., 1983, 240 pp. (Russian) | MR

[4] Montgomery H. L., Vaughan R. C., “The exceptional set in Goldbach's problem”, Acta Arith., 27 (1975), 353–370 | DOI | MR | Zbl

[5] Huxley M. N., “On the difference between consequtive primes”, Invent. Math., 15:1 (1972), 164–170 | MR | Zbl

[6] Ivić A., The Riemann zeta-function: The theory of the Riemann zeta-function with applications, John Wiley Sons, New York etc., 1985 | MR | Zbl

[7] Gir'ko, V. V., Gritsenko, S. A., “On a diophantine inequality with primes”, Chebyshevskii sbornik, 7:4 (2006), 26–30 (In Russian) | MR | Zbl

[8] Wilson B. M., “Proofs of some formulae enunciated by Ramanujan”, Proc. Lond. Math. Soc., s2-21 (1922), 235–255 | MR