On the number of lattice points of linear comparison solutions in rectangular areas
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 311-324.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of the hyperbolic zeta function of lattices, a significant role is played by the Bakhvalov theorem, in which the magnitude of the zeta function of the lattice of linear comparison solutions is estimated through the hyperbolic lattice parameter. In N. M. Korobov's 1963 monograph, this theorem is proved by a method different from the original work of N. S. Bakhvalov. In this method, the central role is played by the lemma about the number of linear comparison solutions in a rectangular area. In 2002, V. A. Bykovsky obtained fundamentally new estimates from below and from above, which coincided in order. The paper gives new estimates of the number of lattice points of linear comparison solutions in rectangular regions. This allows us to prove the strengthened Bakhvalov—Korobov—Bykovsky theorem on the estimate of the hyperbolic zeta function of the lattice of linear comparison solutions. The difference between the theorem on the number of lattice points of solutions to linear comparison in rectangular areas and the corresponding Korobov lemma is that instead of an estimate through the ratio of the volume of a rectangular area to the hyperbolic parameter, a modified Bykovsky estimate is given through minimal solutions to linear comparison. The use of the theorem on the number of lattice points of solutions to linear comparison in rectangular domains is supplemented by the generalized Korobov lemma on estimates of the residual series and a number of other modifications in the proof of the Bakhvalov—Korobov theorem, which made it possible to prove the strengthened Bakhvalov—Korobov—Bykovsky theorem on estimates hyperbolic zeta function of the lattice of linear comparison solutions.
Keywords: parallelepipedal grid, quadrature formulas, method of optimal coefficients, quantitative measure of grid quality.
@article{CHEB_2023_24_4_a17,
     author = {N. K. Ter-Gukasova and M. N. Dobrovolsky and N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {On the number of lattice points of linear comparison solutions in rectangular areas},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {311--324},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a17/}
}
TY  - JOUR
AU  - N. K. Ter-Gukasova
AU  - M. N. Dobrovolsky
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - On the number of lattice points of linear comparison solutions in rectangular areas
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 311
EP  - 324
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a17/
LA  - ru
ID  - CHEB_2023_24_4_a17
ER  - 
%0 Journal Article
%A N. K. Ter-Gukasova
%A M. N. Dobrovolsky
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T On the number of lattice points of linear comparison solutions in rectangular areas
%J Čebyševskij sbornik
%D 2023
%P 311-324
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a17/
%G ru
%F CHEB_2023_24_4_a17
N. K. Ter-Gukasova; M. N. Dobrovolsky; N. N. Dobrovol'skii; N. M. Dobrovol'skii. On the number of lattice points of linear comparison solutions in rectangular areas. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 311-324. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a17/

[1] Babenko K.I., Fundamentals of numerical analysis, Nauka, M., 1986

[2] Bakhvalov N.S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[3] Bocharova L.P., “Algorithms for finding the optimal coefficients”, Chebyshevskij sbornik, 8:1(21) (2007), 4–109 | MR | Zbl

[4] Bykovskij V.A., “On the error of number-theoretic quadrature formulas”, Chebyshevskij sbornik, 3:2(4) (2002), 27–33 | MR | Zbl

[5] O. A. Gorkusha, N. M. Dobrovolsky, “On estimates of hyperbolic zeta function of lattices”, Chebyshevsky sbornik, 6:2(14) (2005), 130–138 | MR

[6] Dobrovol'skaya L. P., Dobrovol'skii N. M., Simonov A.S., “On the error of approximate integration over modified grids”, Chebyshevskij sbornik, 9:1(25) (2008), 185–223 | MR | Zbl

[7] Dobrovol'skii M. N., “Estimates of sums over a hyperbolic cross”, Izvestie Tul'skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90 | MR

[8] Dobrovol'skii M. N., “The optimum coefficients of the combined meshes”, Chebyshevskij sbornik, 5:1(9) (2004), 95–121 | MR | Zbl

[9] Dobrovol'skii M. N., Dobrovol'skii N. M., Kiseleva O.V., “On the product of generalized parallelepipedal grids of integer lattices”, Chebyshevskij sbornik, 3:2(4) (2002), 43–59 | MR | Zbl

[10] Dobrovol'skii, N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, no. 6090-84, 1984

[11] Dobrovol'skii N. M., Korobov N. M., “On the error estimation of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskij sbornik, 3:1 (2002), 41–48 | MR | Zbl

[12] A. N. Kormacheva, N. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the hyperbolic parameter of a two-dimensional lattice of comparisons”, Chebyshevskii sbornik, 22:4 (2021), 168–182 | MR

[13] Korobov N.M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25

[14] Korobov N.M., “On approximate computation of multiple integrals”, Doklady Akademii nauk SSSR, 124:6 (1959), 1207–1210 | Zbl

[15] Korobov N.M., “Properties and calculation of optimal coefficients”, Doklady Akademii nauk SSSR, 132:5 (1960), 1009–1012 | Zbl

[16] Korobov N.M., On number-theoretic methods in approximate analysis, Mashgiz, M., 1963

[17] Korobov N.M., “Quadrature formulas with combined grids”, Matematicheskie zametki, 55:2 (1994), 83–90 | Zbl

[18] Korobov N.M., Number-theoretic methods in approximate analysis, 2nd ed, MTSNMO, M., 2004

[19] Korobov N.M., “About one estimation in the method of optimal coefficients”, Tezisy IV Vserossijskoj konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki”, 2002, 39–40

[20] N. M. Korobov, N. M. Dobrovolsky, “Optimality criteria and algorithms for searching for optimal coefficients”, Chebyshevskii sbornik, 8:4(24) (2007), 105–128 | Zbl

[21] Lokutsievskij, O. V., Gavrikov, M. B., The beginning of numerical analysis, TOO “Yanus”, Moscow, Russia, 1995 | MR

[22] Melnikov O.V., Remeslenikov V.N., Romankov V.A. et al., General algebra, v. 1, Reference mat. b-ka, Science. Ch. ed. Phys.-Math. lit., M., 1990, 592 pp.

[23] Rebrov, E.D., “Dobrovolskaya's algorithm and numerical integration with the stopping rule”, Chebyshevskii sbornik, 10:1(29) (2009), 65–77 | MR

[24] Ogorodnichuk N. K., Rebrov E. D., “On the numerical integration algorithm with the stopping rule”, Proceedings of the 7th international conference “Algebra and number theory: modern problems and applications”, Iz-vo TSPU im. L. N. Tolstoy, Tula, 2010, 153–158

[25] Ogorodnichuk N. K., Rebrov E. D., “POIVS TMK: Integration algorithms with a stopping rule”, International scientific and practical conference “Multiscale modeling of structures and nanotechnology, dedicated to the 190th anniversary of the birth of academician Pafnutiy Lvovich Chebyshev, the centenary of the birth of academician Sergei Vasilyevich Vonsovsky and 80 -anniversary of the birth of corresponding member Viktor Anatolyevich Buravikhin”, Iz-vo TSPU im. L. N. Tolstoy, Tula, 2011, 153–158

[26] Nikolay M. Dobrovolskiy, Larisa P. Dobrovolskaya, Nikolay N. Dobrovolskiy, Nadegda K. Ogorodnichuk, Evgenii D. Rebrov, “Algorithms fot computing optimal coefficients”, Book of abstracts of the International scientific conference “Computer Algebra and Information Technology” (Odessa, August 20—26, 2012), 22–24

[27] Dobrovolskaya L. P., Dobrovolsky N. M., Dobrovolsky N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Some issues of the number-theoretic method in approximate analysis”, Scientific notes of Oryol State University, 2012, no. 6-2, Proceedings X international conference “Algebra and number theory: modern problems and applications”, 90–98

[28] Seregina N. K., “Algorithms for numerical integration with the stopping rule”, News of TulGU. Natural Sciences, 2013, no. 3, 1293–201

[29] Seregina N.K., “On a quantitative measure of the quality of optimal coefficients”, News of TulSU. Natural Sciences, 2015, no. 1, 22–29

[30] N. K. Ter-Gukasova, M. N. Dobrovol'skii, N. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the number of lattice points of linear comparison solutions in rectangular areas”, Chebyshevskii sbornik, 23:5 (2022), 130–144 | DOI | MR | Zbl