Smooth variety of lattices
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 299-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the previous work of the authors, the foundations of the theory of smooth manifolds of number-theoretic lattices were laid. The simplest case of one-dimensional lattices was considered. This article considers the general case of multidimensional lattices. Note that the geometry of the metric spaces of multidimensional lattices is much more complex than the geometry of ordinary Euclidean space. This is evident from the paradox of the non-additivity of the length of a segment in the space of shifted one-dimensional lattices. From the presence of this paradox it follows that there is an open problem of describing geodesic lines in spaces of multidimensional lattices, as well as in finding a formula for the length of arcs of lines in these spaces. Naturally, it would be interesting not only to describe these objects, but also to obtain a number-theoretic interpretation of these concepts. A further direction of research could be the study of the analytical continuation of the hyperbolic zeta function on spaces of multidimensional lattices. As is known, the analytical continuation of the hyperbolic zeta function of lattices was constructed for an arbitrary Cartesian lattice. Even the question of the continuity of these analytic continuations in the left half-plane in lattice space has not been studied. All of these, in our opinion, are relevant areas for further research.
Keywords: algebraic lattices, a metric space lattices.
@article{CHEB_2023_24_4_a16,
     author = {E. N. Smirnova and O. A. Pikhtil'kova and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Smooth variety of lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {299--310},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a16/}
}
TY  - JOUR
AU  - E. N. Smirnova
AU  - O. A. Pikhtil'kova
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Smooth variety of lattices
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 299
EP  - 310
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a16/
LA  - ru
ID  - CHEB_2023_24_4_a16
ER  - 
%0 Journal Article
%A E. N. Smirnova
%A O. A. Pikhtil'kova
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Smooth variety of lattices
%J Čebyševskij sbornik
%D 2023
%P 299-310
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a16/
%G ru
%F CHEB_2023_24_4_a16
E. N. Smirnova; O. A. Pikhtil'kova; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Smooth variety of lattices. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 299-310. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a16/

[1] V. I. Arnold, Obyknovennye differentsialnye uravneniya, Nauka, M., 1975, 240 pp.

[2] L. P. Dobrovolskaya, M. N. Dobrovolskii, N. M. Dobrovolskii, N. N. Dobrovolskii, “Giperbolicheskie dzeta-funktsii setok i reshetok i vychislenie optimalnykh koeffitsientov”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107 | Zbl

[3] N. M. Dobrovolskii, Otsenki otklonenii obobschennykh parallelepipedalnykh setok, Dep. v VINITI 24.08.84, No 6089–84

[4] N. M. Dobrovolskii, O kvadraturnykh formulakh na klassakh $E_s^\alpha(c)$ i $H_s^\alpha(c)$, Dep. v VINITI 24.08.84, No 6091–84

[5] N. M. Dobrovolskii, Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090–84

[6] N. M. Dobrovolskii, “Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya k priblizhennomu analizu”, IV Mezhdunarodnaya konferentsiya “Sovremennye problemy teorii chisel i ee prilozheniya” posvyaschennaya 180-letiyu P.L. Chebysheva i 110-letiyu I. M. Vinogradova (Tula, 10-15 sentyabrya, 2001), v. I, Aktualnye problemy, MGU, M., 2002, 54–80

[7] N. M. Dobrovolskii, Mnogomernye teoretiko-chislovye setki i reshetki i ikh prilozheniya, Izd-vo Tul. gos. ped. un-ta im. L. N. Tolstogo, Tula, 2005

[8] N. M. Dobrovolskii, N. N. Dobrovolskii, V. N. Soboleva, D. K. Sobolev, L. P. Dobrovolskaya, O. E. Bocharova, “O giperbolicheskoi dzeta-funktsii Gurvitsa”, Chebyshevskii sb., 17:3 (2016), 72–105 | DOI | MR | Zbl

[9] N. M. Dobrovolskii, E. V. Manokhin, I. Yu. Rebrova, A. L. Roschenya, “O nepreryvnosti dzeta-funktsii setki s vesami”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 7:1 (2001), 82–86 | MR

[10] N. M. Dobrovolskii, I. Yu. Rebrova, A. L. Roschenya, “Nepreryvnost giperbolicheskoi dzeta-funktsii reshetok”, Mat. zametki, 63:4 (1998), 522–526 | DOI | MR | Zbl

[11] N. M. Dobrovolskii, A. L. Roschenya, “O chisle tochek reshetki v giperbolicheskom kreste”, Algebraicheskie, veroyatnostnye, geometricheskie, kombinatornye i funktsionalnye metody v teorii chisel, II Mezhdunar. konf., Sb. tez. dokl. (Voronezh), 1995, 53

[12] N. M. Dobrovolskii, A. L. Roschenya, “O nepreryvnosti giperbolicheskoi dzeta-funktsii reshetok”, Izv. Tul. gos. un-ta. Ser. Matematika. Mekhanika. Informatika, 2:1 (1996), 77–87 | MR

[13] N. M. Dobrovolskii, A. L. Roschenya, “O chisle tochek reshetki v giperbolicheskom kreste”, Mat. zametki, 63:3 (1998), 363–369 | DOI | MR | Zbl

[14] Dzh. V. S. Kassels, Vvedenie v geometriyu chisel, Mir, M., 1965, 420 pp.

[15] A. N. Kormacheva, “Priblizhenie kvadratichnykh algebraicheskikh reshetok tselochislennymi reshetkami II”, Chebyshevckii sbornik, 21:3 (2019), 215–222 | DOI | MR

[16] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[17] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.

[18] I. Yu. Rebrova, “Nepreryvnost obobschennoi giperbolicheskoi dzeta-funktsii reshetok i ee analiticheskoe prodolzhenie”, Izv. TulGU. Ser. Mekhanika. Matematika. Informatika, 4:3 (1998), 99–108 | MR

[19] E. N. Smirnova, O. A. Pikhtilkova, N. N. Dobrovolskii, N. M. Dobrovolskii, “Algebraicheskie reshetki v metricheskom prostranstve reshetok”, Chebyshevskii sb., 18:4 (2017), 326–338 | MR | Zbl

[20] E. N. Smirnova, O. A. Pikhtilkova, N. N. Dobrovolskii, I. Yu. Rebrova, N. M. Dobrovolskii, “Gladkoe mnogoobrazie odnomernykh reshetok”, Chebyshevckii sbornik, 21:3 (2020), 165–185 | DOI | MR | Zbl

[21] F. Uorner, Osnovy teorii gladkikh mnogoobrazii i gruppy Li, Mir, M., 1987, 304 pp. | MR

[22] T. S. Shmeleva, “Nepreryvnost giperbolicheskogo parametra reshetok”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2009, no. 3, 92–99

[23] L. P. Dobrovolskaya, M. N. Dobrovolsky, N. M. Dobrovol'skii, N. N. Dobrovolsky, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl