Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a14, author = {U. M. Pachev and R. A. Dokhov and A. H. Kodzokov and M. S. Nirova}, title = {On {Some} arithmetic applications to the theory of symmetric groups}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {252--263}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/} }
TY - JOUR AU - U. M. Pachev AU - R. A. Dokhov AU - A. H. Kodzokov AU - M. S. Nirova TI - On Some arithmetic applications to the theory of symmetric groups JO - Čebyševskij sbornik PY - 2023 SP - 252 EP - 263 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/ LA - ru ID - CHEB_2023_24_4_a14 ER -
%0 Journal Article %A U. M. Pachev %A R. A. Dokhov %A A. H. Kodzokov %A M. S. Nirova %T On Some arithmetic applications to the theory of symmetric groups %J Čebyševskij sbornik %D 2023 %P 252-263 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/ %G ru %F CHEB_2023_24_4_a14
U. M. Pachev; R. A. Dokhov; A. H. Kodzokov; M. S. Nirova. On Some arithmetic applications to the theory of symmetric groups. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 252-263. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/
[1] Borevich Z. I., Zhafarevich I. R., Number theory, Nauka, Moscow, Russia, 1985, 510 pp. | MR
[2] Bertran, Journ. de l'Ecole Polyt., 1845
[3] Landau E., “Über die Maximalordnung der Permutation gegeben Grads”, Archiv der Math. Und Phus., Ser. 3, 5 (1903), 92–103
[4] Shah S., “An Ineguality for the Arithmetical Function $g(x)$. I”, Indian Math. Soc., 3 (1939), 316–318 | MR | Zbl
[5] Massian I., “Majoration explite de l'ordre maximum d'un element du group symetrique”, Ann. Fac. Shi. Toulouse Math., 5:6 (1984) ; 3–4, 269–281 | MR
[6] Szalay M., “On the Maximal Order in $S_{n}$ and $S_{n}^{*}$”, Acta Arith., 37 (1980), 321–331 | DOI | MR | Zbl
[7] Nicolas I. L., “Ordre maximal d'un element du group des permutations et highly composite numbers”, Bull. Soc. Math. Franke, 97 (1969), 129–191 | DOI | MR | Zbl
[8] Nathanson M. B., “On the Greatest Order of an Element of the Symmetric Group”, this Monthly, 79 (1972), 500–501 | MR | Zbl
[9] Miller W., “The Maximum Order of an Element of a Finite Symmetric Group”, The American Mathematical Montly, 94:6 (1987), 497–506 | DOI | MR | Zbl
[10] Pachev U. M., Shokuev V. N., “On thr application of the theory of congruence to the study of subgroups in symmetric groups”, Jzw. KBNTs RAS, 2001, no. 1(6), 68–69
[11] Dokhov R. A., Pachev U. M., “On the maximum number of primedivisors of orders of cyclic subgroups in $a$ symmetris group”, Procceedings of the XXII International Conference “Algebra, number theory, discrete geometry and multiscale modeling: modern problems, applications and prolems of history” (Tula, 2023), 173–174
[12] Vinogradov I. M., Fundavental of Number Theoury, Nauka, M., 1981, 168 pp. | MR
[13] Kargapolov M. I., Merzlyakov Yu. I, Fundamentals of group theory, Nauka, M., 1982, 288 pp. | MR
[14] Zolotareff G., “Nouvelle demonstration de la loi de reciprocite de Legendre”, Nouv. Ann. Math. (2), 11 (1872), 354–362
[15] Gashkov S. B, Modern Elementary Algebra in Problems and Exercises, MCNMO, M., 2006, 328 pp.
[16] Gecke E., Lectures on the theory of algebraic numbers, M.–L., 1940, 260 pp.
[17] Trost E, Prime numbers, GIFML, M., 1959, 136 pp.
[18] Buhshtab A. A., Number theory, M., 1966
[19] Rosser B., “The $n$-th Prime is greater than $n \log n$”, Proc. London. Math. Soc., 45 (1938), 21–44 | MR | Zbl
[20] Krätzel E., Zahlentheorie, VEB Deutscher Verlag der Wissenschaften, Berlin, 1981 | MR | Zbl
[21] Lidl R., Niederreiter G., Finite Fields, v. 2, Mir, M., 1988, 437–820
[22] Pachev U. M., Selected chapter of number theory, Nalchik, 2016, 186 pp.