On Some arithmetic applications to the theory of symmetric groups
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 252-263
Voir la notice de l'article provenant de la source Math-Net.Ru
The work is devoted to some arithmetic applications to the theory of symmetric groups. Using the properties of congruences and classes of residues from number theory, the existence in the symmetric group $S_{n}$ of degree $n$ of cyclic, Abelian and non-Abelian subgroups respectively, of orders is establisned $k$, $\varphi(k)$, and $k \varphi(k)$, where $k \leq n$, $\varphi$ – Euler function, those representations jf grups $\left( \mathbb{Z} / k\mathbb{Z}, + \right)$, $\left( \mathbb{Z} / k\mathbb{Z} \right)^{*}$ and theorem product in the form of degree substitutions $k$. In this case isomorphic embeddings of these groups are constructed following the proof of Cayley's theorem, but along with this, a linear binomial is used $\mathbb{Z} / k\mathbb{Z}$ residue class rings, where $\gcd\left(a, k\right) = 1$.
In addition, the result concerning the isomorphic embedding of a group $\left( \mathbb{Z} / k\mathbb{Z} \right)^{*}$ in to a group $\left( \mathbb{Z} / k\mathbb{Z} \right)^{*}$ in to a group $S_{k}$ extends to an alternating group $A_{k}$ for odd $k$.
The second part of the work examines some applications of prime number theory to cyclic subgroups of the symmetric group $S_{n}$. In particular, applying the Euler-Maclaurin summation formula and bounds for the $k$ in prime, a lower bound for maximum number of prime divisors of cyclic orders in the summetric group $S_{n}$.
Keywords:
symmetric group, subgroup order, modulo congruence, Euler function, substitution sign, quadratic residnes, permutation polynomial, prime divisor of cyclic subgroup order.
@article{CHEB_2023_24_4_a14,
author = {U. M. Pachev and R. A. Dokhov and A. H. Kodzokov and M. S. Nirova},
title = {On {Some} arithmetic applications to the theory of symmetric groups},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {252--263},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/}
}
TY - JOUR AU - U. M. Pachev AU - R. A. Dokhov AU - A. H. Kodzokov AU - M. S. Nirova TI - On Some arithmetic applications to the theory of symmetric groups JO - Čebyševskij sbornik PY - 2023 SP - 252 EP - 263 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/ LA - ru ID - CHEB_2023_24_4_a14 ER -
%0 Journal Article %A U. M. Pachev %A R. A. Dokhov %A A. H. Kodzokov %A M. S. Nirova %T On Some arithmetic applications to the theory of symmetric groups %J Čebyševskij sbornik %D 2023 %P 252-263 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/ %G ru %F CHEB_2023_24_4_a14
U. M. Pachev; R. A. Dokhov; A. H. Kodzokov; M. S. Nirova. On Some arithmetic applications to the theory of symmetric groups. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 252-263. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a14/