Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a13, author = {A. I. Nizhnikov and O. E. Yaremko and N. N. Yaremko}, title = {Generalized {Laplace} {Transform} {Based} on the {Differentiation} {Operator} {With} {Piecewise} {Constant} {Coefficients}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {239--251}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/} }
TY - JOUR AU - A. I. Nizhnikov AU - O. E. Yaremko AU - N. N. Yaremko TI - Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients JO - Čebyševskij sbornik PY - 2023 SP - 239 EP - 251 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/ LA - ru ID - CHEB_2023_24_4_a13 ER -
%0 Journal Article %A A. I. Nizhnikov %A O. E. Yaremko %A N. N. Yaremko %T Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients %J Čebyševskij sbornik %D 2023 %P 239-251 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/ %G ru %F CHEB_2023_24_4_a13
A. I. Nizhnikov; O. E. Yaremko; N. N. Yaremko. Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 239-251. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/
[1] I. I. Bavrin, O. E. Yaremko, “Transformation Operators and Boundary Value Problems”, Differ. Uravn., 40:8 (2004), 1085–1095 | MR | MR | Zbl | Zbl
[2] Gantmakher F. R., Theory of matrices, Chelsea Pub. Co, New York, 1959 | MR
[3] I. T. Efimova, “A certain class of singular problems that can be solved by means of special integral transformations with respect to cylindrical functions”, Differ. Uravn., 8:5 (1972), 817–822 | Zbl
[4] V. A. I'lin, “d'Alembert-type formula for transverse oscillations of an infinite rod consisting of two segments with different densities”, Dokl. Math., 80:1 (2009), 624–626 | DOI | MR | Zbl
[5] V. A. I'lin, “A d'Alembert-type formula for longitudinal oscillations of an infinite rod consisting of two segments with different densities and elasticities”, Dokl. Math., 80:1 (2009), 613–615 | DOI | MR
[6] E. M. Kartashov, “Analytical approaches to the analysis of unsteady heat conduction for partially bounded regions”, TVT, 58:3 (2020), 402–411
[7] Yu. M. Kolyano, B. V. Protsyuk, B. A. Drapkin, “The Green function for spatial stationary problems of heat conduction of a multilayer body”, Differ. Uravn., 28:3 (1992), 524–527 | Zbl
[8] S. V. Leksina, “Initial Value Problems for System of Wave Equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 280–282 | DOI | Zbl
[9] M. P. Lenyuk, “An integral Fourier transform on a piecewise-inhomogeneous half-line”, Soviet Math. (Iz. VUZ), 33:5 (1989), 19–24 | MR | Zbl
[10] A.V. Lykov, Theory of heat conduction, Vysshaia shkola publ., M., 1967
[11] Lykov A.V., Drying theory, Energy, M., 1968, 472 pp. (In Russ.)
[12] Marchenko, V.A., Sturm-Liouville Operators and Their Applications, Birkhauser, Basel, 1977 | MR
[13] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, 2011, 800 pp. | MR | MR
[14] Ya. S. Uflyand, “Correct solution of the nonstationary convective diffusion-problems in cylinders”, Zhurnal Tekhnicheskoi Fiziki, 57:2 (1987), 398–400
[15] Yaremko, O.E., “Matrix integral Fourier transforms for problems with discontinuous coefficients and transformation operators”, Dokl. Math., 76 (2007), 876–878 | DOI | MR | Zbl
[16] Griffiths G., Schiesser W.E., Traveling Wave Analysis of Partial Differential Equations. Numerical and Analytical Methods with Matlab and Maple, Academic Press, 2010, 461 pp. | MR
[17] Legua, M.P., Morales, I., Sánchez Ruiz, L.M., “The Heaviside Step Function and MATLAB”, ICCSA 2008, Computational Science and Its Applications, 5072, Springer, 2008
[18] Polyanin A. D., Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998 | MR | Zbl
[19] Sitnik S. M., Yaremko O., Yaremko N., “Transmutation Operators and Applications”, Transmutation Operators Boundary Value Problems, Springer Nature Switzerland, 2020, 447–466 | MR