Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 239-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper develops the theory of matrix integral Fourier transforms based on a differential operator with piecewise constant matrix coefficients. The definition of the matrix Fourier transform is given, its properties and applications to the modeling of interrelated wave processes in piecewise homogeneous media are studied. An inversion formula for the matrix integral Fourier transform is proved. Significant differences from the scalar case are revealed. A technique for applying the matrix Fourier transform to solving interrelated mixed boundary value problems for systems of hyperbolic differential equations with matrix piecewise constant coefficients is developed. A solution is found for the vector analog of the problem of wave propagation in an infinite string with two regions of different density. A vector analogue of the d'Alembert formula is found. A solution is obtained for a mixed initial-boundary value problem for a system of differential equations of parabolic type, which describes an $n$ component model of an interconnected process of heat and mass transfer in a two-layer media.
Keywords: Matrix integral Fourier transform, d'Alembert formula, matrix exponential, piecewise homogeneous media.
@article{CHEB_2023_24_4_a13,
     author = {A. I. Nizhnikov and O. E. Yaremko and N. N. Yaremko},
     title = {Generalized {Laplace} {Transform} {Based} on the {Differentiation} {Operator} {With} {Piecewise} {Constant} {Coefficients}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {239--251},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/}
}
TY  - JOUR
AU  - A. I. Nizhnikov
AU  - O. E. Yaremko
AU  - N. N. Yaremko
TI  - Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 239
EP  - 251
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/
LA  - ru
ID  - CHEB_2023_24_4_a13
ER  - 
%0 Journal Article
%A A. I. Nizhnikov
%A O. E. Yaremko
%A N. N. Yaremko
%T Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients
%J Čebyševskij sbornik
%D 2023
%P 239-251
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/
%G ru
%F CHEB_2023_24_4_a13
A. I. Nizhnikov; O. E. Yaremko; N. N. Yaremko. Generalized Laplace Transform Based on the Differentiation Operator With Piecewise Constant Coefficients. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 239-251. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a13/

[1] I. I. Bavrin, O. E. Yaremko, “Transformation Operators and Boundary Value Problems”, Differ. Uravn., 40:8 (2004), 1085–1095 | MR | MR | Zbl | Zbl

[2] Gantmakher F. R., Theory of matrices, Chelsea Pub. Co, New York, 1959 | MR

[3] I. T. Efimova, “A certain class of singular problems that can be solved by means of special integral transformations with respect to cylindrical functions”, Differ. Uravn., 8:5 (1972), 817–822 | Zbl

[4] V. A. I'lin, “d'Alembert-type formula for transverse oscillations of an infinite rod consisting of two segments with different densities”, Dokl. Math., 80:1 (2009), 624–626 | DOI | MR | Zbl

[5] V. A. I'lin, “A d'Alembert-type formula for longitudinal oscillations of an infinite rod consisting of two segments with different densities and elasticities”, Dokl. Math., 80:1 (2009), 613–615 | DOI | MR

[6] E. M. Kartashov, “Analytical approaches to the analysis of unsteady heat conduction for partially bounded regions”, TVT, 58:3 (2020), 402–411

[7] Yu. M. Kolyano, B. V. Protsyuk, B. A. Drapkin, “The Green function for spatial stationary problems of heat conduction of a multilayer body”, Differ. Uravn., 28:3 (1992), 524–527 | Zbl

[8] S. V. Leksina, “Initial Value Problems for System of Wave Equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 280–282 | DOI | Zbl

[9] M. P. Lenyuk, “An integral Fourier transform on a piecewise-inhomogeneous half-line”, Soviet Math. (Iz. VUZ), 33:5 (1989), 19–24 | MR | Zbl

[10] A.V. Lykov, Theory of heat conduction, Vysshaia shkola publ., M., 1967

[11] Lykov A.V., Drying theory, Energy, M., 1968, 472 pp. (In Russ.)

[12] Marchenko, V.A., Sturm-Liouville Operators and Their Applications, Birkhauser, Basel, 1977 | MR

[13] A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Dover Publications, 2011, 800 pp. | MR | MR

[14] Ya. S. Uflyand, “Correct solution of the nonstationary convective diffusion-problems in cylinders”, Zhurnal Tekhnicheskoi Fiziki, 57:2 (1987), 398–400

[15] Yaremko, O.E., “Matrix integral Fourier transforms for problems with discontinuous coefficients and transformation operators”, Dokl. Math., 76 (2007), 876–878 | DOI | MR | Zbl

[16] Griffiths G., Schiesser W.E., Traveling Wave Analysis of Partial Differential Equations. Numerical and Analytical Methods with Matlab and Maple, Academic Press, 2010, 461 pp. | MR

[17] Legua, M.P., Morales, I., Sánchez Ruiz, L.M., “The Heaviside Step Function and MATLAB”, ICCSA 2008, Computational Science and Its Applications, 5072, Springer, 2008

[18] Polyanin A. D., Manzhirov, A. V., Handbook of Integral Equations, CRC Press, Boca Raton, 1998 | MR | Zbl

[19] Sitnik S. M., Yaremko O., Yaremko N., “Transmutation Operators and Applications”, Transmutation Operators Boundary Value Problems, Springer Nature Switzerland, 2020, 447–466 | MR