Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a12, author = {F. M. Malyshev}, title = {Invariant differential polynomials}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {212--238}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/} }
F. M. Malyshev. Invariant differential polynomials. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 212-238. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/
[1] Arkhipov G.I., Sadovnichy V.A., Chubarikov V. N., Lectures on mathematical analysis, 5th edition, “Bustard”, M., 2004, 640 pp.
[2] Kirillov A.A., “Invariant operators over geometric quantities”, Results of science and technology, 16, VINITI, M., 1980, 3–29
[3] Pontryagin L.S., Continuous groups, 4-th edition, Nauka, M., 1984, 520 pp. | MR
[4] Malyshev F. M., “Simplicial systems of linear equations”, Algebra, Publishing House of Moscow State University, M., 1980, 53–56
[5] Kostrikin A.I., Manin Yu.I., Linear algebra and geometry, Nauka, M., 1986, 304 pp. | MR
[6] Buarrudj S., “Ternary invariant differential operators acting on the space of weighted densities”, TMF, 158:2 (2009), 165–180 | DOI | MR
[7] Kirillov A.A., “On invariant differential operations on geometric quantities”, Function. analysis and its application, 11:2 (1977), 39–44 | MR
[8] Rudakov A.N., “Irreducible representations of infinite-dimensional Lie algebras of Cartan type”, Izv. AN USSR. Ser. mat., 38:4 (1974), 835–866
[9] Veblen O., “Differential invariants and geometry”, Atti del Congr., Int. Mat. (Bologna, 1929)
[10] Feigin B.L., Fuchs D.B., “On invariant differential operators on a straight line”, Function. analysis and its application, 13:4 (1979), 91–92 | MR | Zbl
[11] Grozman P.Ya., “Classification of bilinear invariant operators over tensor fields”, Function. analysis and its application, 14:2 (1980), 58–59 | MR | Zbl
[12] Bernstein I.N., Leites D.A., “Invariant differential operators in formal tensor fields”, Serdika, 11:4 (1981), 30–45 | MR
[13] Leites D.A., “Irreducible representations of Lie superalgebras of vector fields and invariant differential operators”, Function. analysis and its application, 16:1 (1982), 76–77 | MR | Zbl
[14] Feigin B.L., Fuchs D.B., “Skew-symmetric invariant differential operators on a straight line and Verma modules over the Virasoro algebra”, Function. analysis and its application, 16:2 (1982), 47–63 | MR | Zbl
[15] Tabachnikov S.L., “On invariant differential operators of general position”, Function. analysis and its application, 16:3 (1982), 86–87 | MR
[16] Shmelev G.S., “Irreducible representations of infinite-dimensional Hamiltonian and Poisson Lie superalgebras and invariant differential operators”, Serdika, 12:1 (1982), 11–23
[17] Shmelev G.S., “Differential $H(2n,m)$-invariant operators and indecomposable $osp(2,2n)$-representations”, Function. analysis and its application, 17:4 (1983), 94–95 | MR | Zbl
[18] Shmelev G.S., “Invariant operators on a symplectic supermanifold”, Mat. Sat., 120(162):4 (1983), 528–539 | MR
[19] Iohara K., Mathieu O., “A Global version of Grozman's theorem”, Math. Zeitschrift, 274:3 (2013), 955–992 | DOI | MR | Zbl
[20] Bouarroudj S., Leites D.A., “Invariant differential operators in positive characteristic”, J. Algebra, 499 (2018), 281–297 | DOI | MR | Zbl
[21] Grozman P., “Invariant bilinear differential operators”, Communications in Mathematics, 30:3 (2022), 129–188 | MR
[22] Stanley R., Enumerative combinatorics. Trees producing functions and symmetric functions, Mir, M., 2005, 767 pp.
[23] Arbogast L. F. A., Du calcul des dérivations aux sŕies rćurrentes, tant simples que doubles or triples, d'un ordre quelconque, Levrault, Strasbourg, 1800
[24] Faà di Bruno F., “Sullo sviluppo delle funzioni”, Annali di Scienze Matematiche et Fisiche di Tortoloni, 6 (1855), 479–480
[25] Faà di Bruno F., “Note sur une nouvelle formule de calcul différentiel”, Quart. J. Math., 1 (1857), 359–360
[26] Wenninger M., Models of polyhedra, Mir, M., 1974, 236 pp. | MR