Invariant differential polynomials
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 212-238

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the method proposed in the article for solving the so-called $(r,s)$-systems of linear equations proven that the orders of homogeneous invariant differential operators $n$ of smooth real functions of one variable take values from $n$ to $\frac{n(n+1)}{2}$, and the dimension of the space of all such operators does not exceed $n!$. A classification of invariant differential operators of order $n+s$ is obtained for $s=1,2,3,4$, and for $n=4$ for all orders from 4 to 10. The only, up to factors, homogeneous invariant differential operators of the smallest order $n$ and the largest order $\frac{n(n+1)}{2}$ are given, respectively, by the product of the $n$ first differentials ($s=0$ ) and the Wronskian ($s=(n-1)n/2$). The existence of nonzero homogeneous invariant differential operators of order $n+s$ for $s\frac{1+\sqrt{5}}{2}(n-1)$ is proved.
Keywords: derivative, differential, system of linear equations, simplex, invariant differential operator
@article{CHEB_2023_24_4_a12,
     author = {F. M. Malyshev},
     title = {Invariant differential polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {212--238},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Invariant differential polynomials
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 212
EP  - 238
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/
LA  - ru
ID  - CHEB_2023_24_4_a12
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Invariant differential polynomials
%J Čebyševskij sbornik
%D 2023
%P 212-238
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/
%G ru
%F CHEB_2023_24_4_a12
F. M. Malyshev. Invariant differential polynomials. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 212-238. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/