Invariant differential polynomials
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 212-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the method proposed in the article for solving the so-called $(r,s)$-systems of linear equations proven that the orders of homogeneous invariant differential operators $n$ of smooth real functions of one variable take values from $n$ to $\frac{n(n+1)}{2}$, and the dimension of the space of all such operators does not exceed $n!$. A classification of invariant differential operators of order $n+s$ is obtained for $s=1,2,3,4$, and for $n=4$ for all orders from 4 to 10. The only, up to factors, homogeneous invariant differential operators of the smallest order $n$ and the largest order $\frac{n(n+1)}{2}$ are given, respectively, by the product of the $n$ first differentials ($s=0$ ) and the Wronskian ($s=(n-1)n/2$). The existence of nonzero homogeneous invariant differential operators of order $n+s$ for $s\frac{1+\sqrt{5}}{2}(n-1)$ is proved.
Keywords: derivative, differential, system of linear equations, simplex, invariant differential operator
@article{CHEB_2023_24_4_a12,
     author = {F. M. Malyshev},
     title = {Invariant differential polynomials},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {212--238},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/}
}
TY  - JOUR
AU  - F. M. Malyshev
TI  - Invariant differential polynomials
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 212
EP  - 238
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/
LA  - ru
ID  - CHEB_2023_24_4_a12
ER  - 
%0 Journal Article
%A F. M. Malyshev
%T Invariant differential polynomials
%J Čebyševskij sbornik
%D 2023
%P 212-238
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/
%G ru
%F CHEB_2023_24_4_a12
F. M. Malyshev. Invariant differential polynomials. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 212-238. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a12/

[1] Arkhipov G.I., Sadovnichy V.A., Chubarikov V. N., Lectures on mathematical analysis, 5th edition, “Bustard”, M., 2004, 640 pp.

[2] Kirillov A.A., “Invariant operators over geometric quantities”, Results of science and technology, 16, VINITI, M., 1980, 3–29

[3] Pontryagin L.S., Continuous groups, 4-th edition, Nauka, M., 1984, 520 pp. | MR

[4] Malyshev F. M., “Simplicial systems of linear equations”, Algebra, Publishing House of Moscow State University, M., 1980, 53–56

[5] Kostrikin A.I., Manin Yu.I., Linear algebra and geometry, Nauka, M., 1986, 304 pp. | MR

[6] Buarrudj S., “Ternary invariant differential operators acting on the space of weighted densities”, TMF, 158:2 (2009), 165–180 | DOI | MR

[7] Kirillov A.A., “On invariant differential operations on geometric quantities”, Function. analysis and its application, 11:2 (1977), 39–44 | MR

[8] Rudakov A.N., “Irreducible representations of infinite-dimensional Lie algebras of Cartan type”, Izv. AN USSR. Ser. mat., 38:4 (1974), 835–866

[9] Veblen O., “Differential invariants and geometry”, Atti del Congr., Int. Mat. (Bologna, 1929)

[10] Feigin B.L., Fuchs D.B., “On invariant differential operators on a straight line”, Function. analysis and its application, 13:4 (1979), 91–92 | MR | Zbl

[11] Grozman P.Ya., “Classification of bilinear invariant operators over tensor fields”, Function. analysis and its application, 14:2 (1980), 58–59 | MR | Zbl

[12] Bernstein I.N., Leites D.A., “Invariant differential operators in formal tensor fields”, Serdika, 11:4 (1981), 30–45 | MR

[13] Leites D.A., “Irreducible representations of Lie superalgebras of vector fields and invariant differential operators”, Function. analysis and its application, 16:1 (1982), 76–77 | MR | Zbl

[14] Feigin B.L., Fuchs D.B., “Skew-symmetric invariant differential operators on a straight line and Verma modules over the Virasoro algebra”, Function. analysis and its application, 16:2 (1982), 47–63 | MR | Zbl

[15] Tabachnikov S.L., “On invariant differential operators of general position”, Function. analysis and its application, 16:3 (1982), 86–87 | MR

[16] Shmelev G.S., “Irreducible representations of infinite-dimensional Hamiltonian and Poisson Lie superalgebras and invariant differential operators”, Serdika, 12:1 (1982), 11–23

[17] Shmelev G.S., “Differential $H(2n,m)$-invariant operators and indecomposable $osp(2,2n)$-representations”, Function. analysis and its application, 17:4 (1983), 94–95 | MR | Zbl

[18] Shmelev G.S., “Invariant operators on a symplectic supermanifold”, Mat. Sat., 120(162):4 (1983), 528–539 | MR

[19] Iohara K., Mathieu O., “A Global version of Grozman's theorem”, Math. Zeitschrift, 274:3 (2013), 955–992 | DOI | MR | Zbl

[20] Bouarroudj S., Leites D.A., “Invariant differential operators in positive characteristic”, J. Algebra, 499 (2018), 281–297 | DOI | MR | Zbl

[21] Grozman P., “Invariant bilinear differential operators”, Communications in Mathematics, 30:3 (2022), 129–188 | MR

[22] Stanley R., Enumerative combinatorics. Trees producing functions and symmetric functions, Mir, M., 2005, 767 pp.

[23] Arbogast L. F. A., Du calcul des dérivations aux sŕies rćurrentes, tant simples que doubles or triples, d'un ordre quelconque, Levrault, Strasbourg, 1800

[24] Faà di Bruno F., “Sullo sviluppo delle funzioni”, Annali di Scienze Matematiche et Fisiche di Tortoloni, 6 (1855), 479–480

[25] Faà di Bruno F., “Note sur une nouvelle formule de calcul différentiel”, Quart. J. Math., 1 (1857), 359–360

[26] Wenninger M., Models of polyhedra, Mir, M., 1974, 236 pp. | MR