The space of Dirichlet series to multivariate lattices
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 206-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work considers the set of all possible Dirichlet series generated by a given lattice, and studies the properties of this function space over the field of complex numbers. A new concept of $C$ $\theta$-power density of a Dirichlet series is introduced. A connection is established between the $C$ $\theta$-power density of the Dirichlet series and the abscissa of its absolute convergence. It is established that if the Dirichlet series $f(\alpha|\Lambda)$ satisfies the conditions of the generalized Selberg lemma with $\theta_1\theta$, then the Dirichlet series $f(\alpha|\Lambda)$ extends analytically into the half-plane with $\ sigma>\theta_1$, except for the point $\alpha=\theta$, at which it has a first-order pole with a subtraction of $C\theta$. A new concept $C$ logarithmic $\theta$-power density of the Dirichlet series is introduced. It has been established that if the Dirichlet series $f(\alpha|\Lambda)$ has $C$ logarithmic $\theta$-power density and $\theta1$, then the abscissa of absolute convergence holds the equality $\sigma_f=0$ and The Dirichlet series $f(\alpha|\Lambda)$ is a holomorphic function in the entire right $\alpha$-half-plane with $\sigma>0$. It is shown that if the Dirichlet series $f(\alpha|\Lambda)$ has $C$ logarithmic $\theta$-power density and $\theta1$, then The holomorphic domain of the zeta function $\zeta(M|\alpha)$ is $\alpha$-the half-plane $\sigma>0$.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers.
@article{CHEB_2023_24_4_a11,
     author = {N. V. Maksimenko and I. Yu. Rebrova},
     title = {The space of {Dirichlet} series to multivariate lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {206--211},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a11/}
}
TY  - JOUR
AU  - N. V. Maksimenko
AU  - I. Yu. Rebrova
TI  - The space of Dirichlet series to multivariate lattices
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 206
EP  - 211
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a11/
LA  - ru
ID  - CHEB_2023_24_4_a11
ER  - 
%0 Journal Article
%A N. V. Maksimenko
%A I. Yu. Rebrova
%T The space of Dirichlet series to multivariate lattices
%J Čebyševskij sbornik
%D 2023
%P 206-211
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a11/
%G ru
%F CHEB_2023_24_4_a11
N. V. Maksimenko; I. Yu. Rebrova. The space of Dirichlet series to multivariate lattices. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 206-211. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a11/

[1] N. N. Dobrovol'skii, “One model Zeta function of the monoid of natural numbers”, Chebyshevskii sbornik, 20:1 (2019), 148–163 | DOI | Zbl

[2] N. V. Maksimenko, “The space of Dirichlet series to multivariate lattices and the algebra of Dirichlet series of grids, repetitive multiplication”, Chebyshevskii sbornik, 21:1 (2020), 233–246 | DOI | MR

[3] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[4] Chudakov N. G., Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.-L., 1947, 204 pp. | MR