Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a10, author = {A. Lopez Perez and O. Cuellar Justiz}, title = {On bijective functions of fixed variables in the {Galois} field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {191--205}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/} }
TY - JOUR AU - A. Lopez Perez AU - O. Cuellar Justiz TI - On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$ JO - Čebyševskij sbornik PY - 2023 SP - 191 EP - 205 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/ LA - ru ID - CHEB_2023_24_4_a10 ER -
%0 Journal Article %A A. Lopez Perez %A O. Cuellar Justiz %T On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$ %J Čebyševskij sbornik %D 2023 %P 191-205 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/ %G ru %F CHEB_2023_24_4_a10
A. Lopez Perez; O. Cuellar Justiz. On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 191-205. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/
[1] Lausch H., Nöbauer W., Algebra of Polynomials, North-Holl. Publ. Co, American Elsevier Publ. Co, 1973 | MR | Zbl
[2] Mahler K., $ p $-Adic Numbers and Their Functions, 2nd., Cambridge University Press, Cambridge, 1981 | MR
[3] Koblitz N., $ p $-adic numbers, $ p $-adic analysis, and zeta-functions, Graduate Texts in Mathematics, 58, 2nd, Springer, Berlin, 1984 | MR
[4] Schiknof W. H., Ultrametric Calculus, Cambridge University Press, Cambridge, 1984 | MR
[5] Lidl R., Niederreiter H., Finite Fields, Mir, M., 1988
[6] Anashin V. S., “Uniformly Distribueted Sequences of $p$-Adic Integers”, Matematicheskie Zametki, 55:2 (1994), 3–46 | MR | Zbl
[7] Anashin V., Khrennikov A., Applied Algebraic Dynamics, De Gruyter Expositions in Mathematics, 49, Walter de Gruyter, Berlin–New York, 2009 | MR | Zbl
[8] Durand F., Paccaut F., “Minimal polynomial dynamics on the set of 3-adic integers”, Bull. London Math. Soc., 42:2 (2009), 302–314 | DOI | MR
[9] Shafarevich I. R., Remizov A. O., Linear Algebra and Geometry, Fizmatlit, 2009
[10] Khrennikov A., Yurova E., “Criteria of ergodicity for $ p $-adic dynamical systems in terms of coordinate functions”, Chaos, Solitons and Fractals, 60 (2014), 11–30 | DOI | MR | Zbl
[11] Yurova E. A., Khrennikov A. Y., “Generalization of Hensel lemma: finding the roots of p-adic Lipschitz functions”, J. Number Theory, 158 (2016), 217–233 | DOI | MR | Zbl
[12] Memic N., Ergodicity conditions on the group of 3-adic integers, Colloquium Mathematicum, Memic, N., 2016 | MR
[13] Memic N., “Ergodic Polynomials on Subsets of $ p $-Adic Integers”, $ p $-Adic Numbers, Ultrametric Analysis and Applications, 8:2 (2016), 149–159 | MR | Zbl
[14] Yurova E. A., Khrennikov A. Y., “Subcoordinate representation of $ p $-adic functions and generalization of Hensel lemma”, Izvestiya RAN : Ser. Mat., 82:3 (2018), 192–206 | DOI | MR | Zbl
[15] Wang S., Hu B., Liu Y., “The autocorrelation properties of single cycle polynomial T-function”, Des. Codes Cryptogr., 86 (2018), 1527–1540 | DOI | MR | Zbl
[16] Sangtae J., “Measure-preservation and the existence of a root of p-adic 1-Lipschitz functions in Mahlers expansion”, $ p $-Adic Numbers, Ultrametric Analysis and Applications, 10:3 (2018), 192–208 | MR | Zbl
[17] da Silva, D. W., de Araujo, C. P., Chow, E., Barillas, B. S., “A new approach towards fully homomorphic encryption over geometric algebra”, 10th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON), IEEE, 2019, 0241–0249
[18] Khrennikov A. Y., Yurova E. A., “Description of (fully) homomorphic cryptographic primitives within the p-adic model of encryption”, Analysis, Probability, Applications, and Computation, Springer, 2019, 241–148 | MR
[19] Khrennikov A. Y., Yurova E. A., “Description of (fully) homomorphic cryptographic primitives within the p-adic model of encryption”, Analysis, Probability, Applications, and Computation, Springer, 2019, 241–248 | MR
[20] Furno J., “Natural extensions for $ p $-adic {$\beta$}-shifts and other scaling maps”, Indagationes Mathematicae, 30 (2019), 1099–1108 | DOI | MR | Zbl
[21] Kim D., Kwon Y., K. Song K., “Minimality of 5-adic polynomial dynamical systems”, Dynamical Systems: An International Journal, 35:4 (2020), 584–596 | DOI | MR | Zbl
[22] da Silva D. W., A Mathematical Framework Towards Efficient Clifford-Based Homomorphic Cryptosystems Using p-Adic Numbers, University of Colorado, Colorado Springs, 2020 | MR
[23] Memić N., “Mahler coefficients of uniformly differentiable functions modulo $ p $”, International Journal of Number Theory, 2020 | MR
[24] Gouvêa F. Q., $ p $-adic Numbers An Introduction, 3rd., Springer, 2020 | MR
[25] da Silva D. W., Harmon L., Delavignette G., Araujo C., Leveled Fully Homomorphic Encryption Schemes with Hensel Codes, Cryptology ePrint Archive, 2021
[26] Anashin V. S., “The $ p $-adic Theory of Automata Functions”, Advances in Non-Archimedean Analysis and Applications, Springer, 2021, 9–113 | MR | Zbl
[27] Memic N., Mahler Coefficients of Some 3-adic Ergodic Functions, Acta Mathematica Vietnamica, 2021 | MR
[28] Zúñiga-Galindo W., Bourama T., Advances in Non-Archimedean Analysis and Applications: The $ p $-adic Methodology in STEAM-H, Springer Nature, 2021 | MR
[29] López A. P., “Measuring Preservation and Ergodicity of 1-Lipschitz Functions on the Ring of 3-Adic Integers in Terms of Coordinate Functions”, Vestnik Moskovskogo Universiteta, Seriya 15, 46:2 (2022), 30–33