On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 191-205

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper there are given necessary and sufficient conditions under which a function of fixed variables $\psi{:} \mathbb{F}_{q}^{i+1}\to\mathbb{F}_{q}$ is bijective, where $ i\in\mathbb{N}\cup\{0\}$, $\mathbb{F}_{q}^{i+1} $ is the $(i+1)$-ary Cartesian power of the Galois field $\mathbb{F}_{q}$ of $ q=p^k $ elements, $ p $ is an odd prime number and $k\in\mathbb{N}$. In addition, such conditions of the bijective functions $\psi$ of fixed variables are used to write a criterion for the preserving Haar measure of functions from the important class of 1-Lipschitz functions in terms of its coordinate functions on the ring of $p$-adic integers $\mathbb{Z}_p, p\neq2$. In particular, the representation of 1-Lipschitz functions in terms of its coordinate functions on the ring of $2$-adic integers $ \mathbb{Z}_2$ turned out to be a general and useful tool for obtaining mathematical results applied in cryptography. In this work, the research of such representation of 1-Lipschitz functions on the ring of $p$-adic integers $ \mathbb{Z}_p,p\neq2$ is being continued, with special attention to the representation of bijective 1-Lipschitz functions in terms of its coordinate functions on $ \mathbb{Z}_p, p\neq2$.
Keywords: Galois field, bijective function, $1$-Lipschitz function, Haar measure, Haar measure-preserving function, coordenate function, ergodic function.
@article{CHEB_2023_24_4_a10,
     author = {A. Lopez Perez and O. Cuellar Justiz},
     title = {On bijective functions of fixed variables in the {Galois} field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {191--205},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/}
}
TY  - JOUR
AU  - A. Lopez Perez
AU  - O. Cuellar Justiz
TI  - On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 191
EP  - 205
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/
LA  - ru
ID  - CHEB_2023_24_4_a10
ER  - 
%0 Journal Article
%A A. Lopez Perez
%A O. Cuellar Justiz
%T On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$
%J Čebyševskij sbornik
%D 2023
%P 191-205
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/
%G ru
%F CHEB_2023_24_4_a10
A. Lopez Perez; O. Cuellar Justiz. On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 191-205. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/