On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 191-205
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper there are given necessary and sufficient conditions under which a function of fixed variables $\psi{:} \mathbb{F}_{q}^{i+1}\to\mathbb{F}_{q}$ is bijective, where $ i\in\mathbb{N}\cup\{0\}$, $\mathbb{F}_{q}^{i+1} $ is the $(i+1)$-ary Cartesian power of the Galois field $\mathbb{F}_{q}$ of $ q=p^k $ elements, $ p $ is an odd prime number and $k\in\mathbb{N}$. In addition, such conditions of the bijective functions $\psi$ of fixed variables are used to write a criterion for the preserving Haar measure of functions from the important class of 1-Lipschitz functions in terms of its coordinate functions on the ring of $p$-adic integers $\mathbb{Z}_p, p\neq2$. In particular, the representation of 1-Lipschitz functions in terms of its coordinate functions on the ring of $2$-adic integers $ \mathbb{Z}_2$ turned out to be a general and useful tool for obtaining mathematical results applied in cryptography. In this work, the research of such representation of 1-Lipschitz functions on the ring of $p$-adic integers $ \mathbb{Z}_p,p\neq2$ is being continued, with special attention to the representation of bijective 1-Lipschitz functions in terms of its coordinate functions on $ \mathbb{Z}_p, p\neq2$.
Keywords:
Galois field, bijective function, $1$-Lipschitz function, Haar measure, Haar measure-preserving function, coordenate function, ergodic function.
@article{CHEB_2023_24_4_a10,
author = {A. Lopez Perez and O. Cuellar Justiz},
title = {On bijective functions of fixed variables in the {Galois} field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {191--205},
publisher = {mathdoc},
volume = {24},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/}
}
TY - JOUR AU - A. Lopez Perez AU - O. Cuellar Justiz TI - On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$ JO - Čebyševskij sbornik PY - 2023 SP - 191 EP - 205 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/ LA - ru ID - CHEB_2023_24_4_a10 ER -
%0 Journal Article %A A. Lopez Perez %A O. Cuellar Justiz %T On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$ %J Čebyševskij sbornik %D 2023 %P 191-205 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/ %G ru %F CHEB_2023_24_4_a10
A. Lopez Perez; O. Cuellar Justiz. On bijective functions of fixed variables in the Galois field of~$p^k$~elements and on the ring of $p$-adic integers for an odd prime number~$p$. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 191-205. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a10/