Lattices of topologies and quasi-orders on a finite chain
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 12-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The lattice of quasi-orders of the universal algebra $A$ is the lattice of those quasi-orders on the set $A$ that are compatible with the operations of the algebra, the lattice of the topologies of the algebra is the lattice of those topologies with respect to which the operations of the algebra are continuous. The lattice of quasi-orders and the lattice of topologies of the algebra $A$, along with the lattice of subalgebras and the lattice of congruences, are important characteristics of this algebra. It is known that a lattice of quasi-orders is isomorphically embedded in a lattice that is anti-isomorphic to a lattice of topologies, and in the case of a finite algebra, this embedding is an anti-isomorphism. A chain $X_n$ of $n$ elements is considered as a lattice with operations $x\wedge y=\min(x,y)$ and $x\vee y=\max(x,y)$. It is proved that the lattice of quasi-orders and the lattice of topologies of the chain $X_n$ are isomorphic to the Boolean lattice of $2^{2n-2}$ elements. A simple correspondence is found between the quasi-orders of the chain $X_n$ and words of length $n-1$ in a 4-letter alphabet. Atoms of the lattice of topologies are found. We deduce from the results on quasi-orders a well-known statement that the congruence lattice of an $n$-element chain is Boolean lattioce of $2^{n-1}$ elements. The results will no longer be true if the chain is considered only with respect to one of the operations $\wedge, \vee$.
Keywords: finite chain, quasiorder lattice of a finite chain, the lattice of topologies of a finite chain, Boolean lattice.
@article{CHEB_2023_24_4_a1,
     author = {A. A. Veselova and I. B. Kozhukhov},
     title = {Lattices of topologies and quasi-orders on a finite chain},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {12--21},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a1/}
}
TY  - JOUR
AU  - A. A. Veselova
AU  - I. B. Kozhukhov
TI  - Lattices of topologies and quasi-orders on a finite chain
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 12
EP  - 21
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a1/
LA  - ru
ID  - CHEB_2023_24_4_a1
ER  - 
%0 Journal Article
%A A. A. Veselova
%A I. B. Kozhukhov
%T Lattices of topologies and quasi-orders on a finite chain
%J Čebyševskij sbornik
%D 2023
%P 12-21
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a1/
%G ru
%F CHEB_2023_24_4_a1
A. A. Veselova; I. B. Kozhukhov. Lattices of topologies and quasi-orders on a finite chain. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 12-21. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a1/

[1] Steiner A. K., “The lattice of topologies: structure and complementation”, Trans. Amer. Math. Soc., 122:2 (1966), 379–398 | DOI | MR | Zbl

[2] Radeleczki S., “The automorphism group of unary algebras”, Mathematica Pannonica, 7:2 (1996), 253–271 | MR | Zbl

[3] Kartashova, A. V., “On quasiorder lattices and topology lattices of algebras”, J. Math. Sci., 163:6 (2009), 682–687 | DOI | MR | Zbl

[4] Baranskii V. A., “Independence of groups of automorphisms and retracts for semigroups and lattices”, Soviet Math. (Iz. VUZ), 30:2 (1986), 70–73 | MR | MR | Zbl | Zbl

[5] Klifford A.,Preston G., Algebraicheskaya teoriya polugrupp, v. 1,2, Mir, M., 1972; Clifford, A. H., Preston, G. B., The algebraic theory of semigroups, v. 1, Mathematical Surveys, 7, American mathematical Society, Providence, 1961 ; v. 2, 1967 | MR | Zbl

[6] Grätzer, G., General lattice theory, 2nd Ed., Springer, Birkhäuser Verlag, Berlin, 2003, xx+663 pp. | MR

[7] Dekhtyar, M. I., Dudakov, S. M., Karlov, B. N., Lectures on discrete mathematics, Textbook, Second edition, revised and expanded, Tver State Univ., Tver, 2019

[8] Engelking, R., General topology, Monografie Matematiczne, 60, 2nd Ed., Pafistwowe Wydawnictwo Naukowe, Warszawa, 1977

[9] Kearnes K. A., Kiss T. W., “The sharp of congruence lattices”, Memoirs of the AMS, 222, no. 1046, 2013, 1–169 | DOI | MR

[10] Mitsch H., “Semigroups and their lattices of congruences”, Semigroup Forum, 26:1 (1983), 1–63 | DOI | MR | Zbl

[11] Freese R. S., Nation J. B., “Congruence lattices of semilattices”, Pacif. J. Math., 49:1 (1973), 51–58 | DOI | MR | Zbl

[12] Adaricheva, K. V., “The structure of congruence lattices of finite semilattices”, Algebra Logika, 35:1 (1996), 3–30 | MR | Zbl