Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_3_a9, author = {M. V. Shamolin}, title = {Some tensor invariants of geodesic, potential, and dissipative systems with four degrees of freedom}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {190--211}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a9/} }
TY - JOUR AU - M. V. Shamolin TI - Some tensor invariants of geodesic, potential, and dissipative systems with four degrees of freedom JO - Čebyševskij sbornik PY - 2023 SP - 190 EP - 211 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a9/ LA - ru ID - CHEB_2023_24_3_a9 ER -
M. V. Shamolin. Some tensor invariants of geodesic, potential, and dissipative systems with four degrees of freedom. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 190-211. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a9/
[1] Bourbaki N., Integration. Measures, measure integration, Nauka, M., 1967 | MR
[2] Bourbaki N., Integration. Measures on locally compact spaces. Continuation of measures. Measures on separable spaces, Nauka, 1977, M., 1977
[3] Weil G., Symmetries, URSS, M., 2007
[4] Georgievskii D. V., Shamolin M. V., “Kinematics and mass geometry for a solid body with a fixed point in $\mathbf{R}^{n}$”, Physics Doklady, 380:1 (2001), 47–50
[5] Georgievskii D. V., Shamolin M. V., “Generalized Euler's Equations Describing the Motion of a Rigid Body with a Fixed Point in $\mathbf{R}^{n}$”, Physics Doklady, 383:5 (2002), 635–637
[6] Georgievskii D. V., Shamolin M. V., “First integrals of motion equations of a generalized gyroscope in $\mathbf{R}^{n}$”, Moscow University Mathematics Bulletin, 2003, no. 5, 37–41 | Zbl
[7] Dubrovin B. A., Novikov S. P., Fomenko A. T., Modern Geometry, Nauka, M., 1979 | MR
[8] Ivanova T. A., “Euler equations in models of theoretical physics”, Mathematical Notes, 52:2 (1992), 43–51
[9] Kamke E, Handbook of Ordinary Differential Equations, Nauka, M., 1976
[10] Klein F., Non-Euclidean geometry, URSS, M., 2017
[11] Kozlov V. V., “Integrability and non-integrability in Hamiltonian mechanics”, Russian Mathematical Surveys, 38:1 (1983), 3–67 | MR | Zbl
[12] Kozlov V. V., “Rational integrals of quasi-homogeneous dynamical systems”, Journal of applied mathematics and mechanics, 79:3 (2015), 307–316 | Zbl
[13] Kozlov V. V., “Tensor invariants and integration of differential equations”, Russian Mathematical Surveys, 74:1(445) (2019), 117–148 | DOI | MR | Zbl
[14] Kolmogorov A. N., “On dynamical systems with an integral invariant on a torus”, Doklady Mathematics, 93:5 (1953), 763–766 | MR | Zbl
[15] Pokhodnya N. V., Shamolin M. V., “A new case of integrability in the dynamics of a multidimensional body”, Vestnik of Samara University. Natural Science Series, 2012, no. 9(100), 136–150 | Zbl
[16] Pokhodnya N.V., Shamolin M.V., “Some conditions of integrability of dynamical systems in transcendental functions”, Vestnik of Samara University. Natural Science Series, 2013, no. 9/1(110), 35–41 | Zbl
[17] Pokhodnya N.V., Shamolin M.V., “Integrable systems on a tangent bundle to a multidimensional sphere”, Vestnik of Samara University. Natural Science Series, 2014, no. 7(118), 60–69 | Zbl
[18] Samsonov V.A., Shamolin M.V., “On the problem of a body motion in a resisting medium”, Moscow University Mechanics Bulletin, 1989, no. 3, 51–54 | Zbl
[19] Trofimov V.V., “Euler equations on finite-dimensional solvable Lie groups”, Izvestiya: Mathematics, 44:5 (1980), 1191–1199 | MR | Zbl
[20] Trofimov V.V., “Symplectic structures on automorphism groups of symmetric spaces”, Moscow University Mathematics Bulletin, 1984, no. 6, 31–33 | Zbl
[21] Trofimov V.V., Fomenko A.T., “The technique of Hamiltonian flows constructing on symmetric spaces and the integrability of some hydrodynamic systems”, Doklady Mathematics, 254:6 (1980), 1349–1353 | MR
[22] Trofimov V.V., Shamolin M.V., “Geometric and dynamical invariants of integrable Hamiltonian and dissipative systems”, Journal of Mathematical Sciences, 16:4 (2010), 3–229
[23] Shabat B.V., Introduction in Complex Analysis, Nauka, M., 1987 | MR
[24] Shamolin M.V., “On integrability in transcendental functions”, Russian mathematical surveys, 53:3 (1998), 209–210 | DOI | MR | Zbl
[25] Shamolin M.V., “Integrability according to Jacobi in the Problem of Motion of a Four-Dimensional Solid in a Resistant Medium”, Physics Doklady, 375:3 (2000), 343–346
[26] Shamolin M.V., “Integration of certain classes of non-conservative systems”, Russian mathematical surveys, 57:1 (2002), 169–170 | DOI | MR
[27] Shamolin M.V., “An integrable case of dynamical equations on $\textrm{so}(4)\times\mathbf{R}^{4}$”, Russian mathematical surveys, 60:6 (2005), 233–234 | DOI | MR | Zbl
[28] Shamolin M.V., “The case of complete integrability in dynamics on a tangent bundle of a two-dimensional sphere”, Russian mathematical surveys, 62:5 (2007), 169–170 | DOI | MR | Zbl
[29] Shamolin M.V., “New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field”, Physics Doklady, 453:1 (2013), 46–49 | DOI | MR
[30] Shamolin M.V., “New case of integrability of dynamic equations on the tangent bundle of a 3-sphere”, Russian mathematical surveys, 68:5(413) (2013), 185–186 | DOI | MR | Zbl
[31] Shamolin M.V., “A New Case of Integrability in the Dynamics of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping”, Physics Doklady, 457:5 (2014), 542–545 | DOI | MR
[32] Shamolin M.V., “Integrable variable dissipation systems on the tangent bundle of a multi-dimensional sphere and some applications”, Journal of Mathematical Sciences, 20:4 (2015), 3–231 | MR
[33] Shamolin M.V., “Complete List of First Integrals of Dynamic Equations for a Multidimensional Solid in a Nonconservative Field”, Physics Doklady, 461:5 (2015), 533–536 | DOI | MR
[34] Shamolin M.V., “Complete List of the First Integrals of Dynamic Equations of a Multidimensional Solid in a Nonconservative Field under the Assumption of Linear Damping”, Physics Doklady, 464:6 (2015), 688–692 | DOI | MR
[35] Shamolin M.V., “Integrable Nonconservative Dynamical Systems on the Tangent Bundle of the Multidimensional Sphere”, Differential equations, 52:6 (2016), 743–759 | DOI | Zbl
[36] Shamolin M.V., “New Cases of Integrable Systems with Dissipation on a Tangent Bundle of a Multidimensional Sphere”, Physics Doklady, 474:2 (2017), 177–181 | DOI | MR
[37] Shamolin M.V., “Integrable Dynamic Systems with Dissipation and Finitely Many Degrees of Freedom”, Journal of mathematical sciences, 2018, no. 95, 79–101 | Zbl
[38] Shamolin M.V., “New Cases of Integrable Systems with Dissipation on the Tangent Bundle of a Multidimensional Manifold”, Physics Doklady, 482:5 (2018), 527–533 | DOI
[39] Shamolin M.V., “New Cases of Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds”, Physics Doklady, 479:3 (2018), 270–276 | DOI | MR
[40] Shamolin M.V., “New Cases of Integrable Odd-Order Systems with Dissipation”, Doklady Mathematics, 491:1 (2020), 95–101 | DOI | Zbl
[41] Shamolin M.V., “New Cases of Homogeneous Integrable Systems with Dissipation on Tangent Bundles of Four-Dimensional Manifolds”, Doklady Mathematics, 497:1 (2021), 23–30 | DOI | Zbl
[42] Shamolin M.V., “New Cases of Integrability of Systems of Geodesics and Potential and Dissipative Systems on Tangent Bundles of Finite-Dimensional Manifolds”, Doklady Mathematics, 500:1 (2021), 78–86 | DOI | Zbl
[43] Shamolin M.V., “Tensor Invariants of Geodesic, Potential, and Dissipative Systems on Tangent Bundles of Two-Dimensional Manifolds”, Doklady Mathematics, 501:1 (2021), 89–94 | DOI | Zbl
[44] Shamolin M.V., “Invariant Volume Forms of Variable Dissipation Systems with Three Degrees of Freedom”, Doklady Mathematics, 507:1 (2022), 86–92 | Zbl
[45] Poincaré H., Calcul des probabilités, Gauthier–Villars, Paris, 1912, 340 pp. | MR
[46] Shamolin M.V., “Some questions of the qualitative theory of ordinary differential equations and dynamics of a rigid body interacting with a medium”, Journal of Mathematical Sciences, 110:2 (2002), 2528–2557 | DOI | MR | Zbl
[47] Tikhonov A.A., Yakovlev A.B., “On dependence of equilibrium characteristics of the space tethered system on environmental parameters”, International Journal of Plasma Environmental Science and Technology, 13:1, 49–52 | MR