On estimates for the period length of functional continued fractions over algebraic number fields
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 162-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates upper bounds on the period length of functional continued fractions for key elements of hyperelliptic fields over number fields. In the case when the hyperelliptic field is given by a polynomial of odd degree, the finite period length is trivially estimated from above twice the power of the fundamental $S$-unit. A more interesting and complicated case is when the hyperelliptic field is given by a polynomial of even degree. In 2019 V.P. Platonov and G.V. Fedorov for hyperelliptic fields $\mathcal{L} = \mathbb{Q}(x)(\sqrt{f})$, $\deg f = 2g+2$, over the field $\mathbb{Q}$ of rational numbers the exact interval of values $s \in \mathbb{Z}$ is found such that the continued fractions of elements of the form $\sqrt{f}/x^s \in \mathcal{L} \setminus \mathbb{Q}(x)$ are periodic. In this article, we find a generalization of this result for an arbitrary field as a field of constants. Based on this result, sharp upper estimates for the lengths of the periods are found functional continued fractions of elements of hyperelliptic fields over number fields $K$, depending only on the genus $g$ of the hyperelliptic field, the degree of extension $k = [K:\mathbb{Q}]$ and order $m$ of the Jacobian torsion subgroup of the corresponding hyperelliptic curve.
Keywords: Continued fractions, period length, hyperelliptic field, fundamental $S$-units, torsion problem in Jacobians.
@article{CHEB_2023_24_3_a8,
     author = {G.V. Fedorov},
     title = {On estimates for the period length of functional continued fractions over algebraic number fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {162--189},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/}
}
TY  - JOUR
AU  - G.V. Fedorov
TI  - On estimates for the period length of functional continued fractions over algebraic number fields
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 162
EP  - 189
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/
LA  - ru
ID  - CHEB_2023_24_3_a8
ER  - 
%0 Journal Article
%A G.V. Fedorov
%T On estimates for the period length of functional continued fractions over algebraic number fields
%J Čebyševskij sbornik
%D 2023
%P 162-189
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/
%G ru
%F CHEB_2023_24_3_a8
G.V. Fedorov. On estimates for the period length of functional continued fractions over algebraic number fields. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 162-189. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/

[1] Artin E., “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–246 | DOI | MR

[2] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl

[3] Adams W. W., Razar M. J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:2 (1980), 481–498 | DOI | MR | Zbl

[4] Schmidt W. M., “On continued fractions and diophantine approximation in power series fields”, Acta arithmetica, 95:2 (2000), 139–166 | DOI | MR | Zbl

[5] Platonov V. P., Benyash-Krivets V. V., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl

[6] Platonov V. P., Fedorov G. V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | DOI | MR | Zbl

[7] Fedorov G. V., “On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields”, Dokl. Math., 106:1 (2022), 259–264 | DOI | MR | Zbl

[8] Platonov V. P., Zhgoon V. S., Petrunin M. M., “On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields”, Sb. Math., 213:3 (2022), 412–442 | DOI | DOI | MR | Zbl

[9] Platonov V. P., Fedorov G. V., “On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields”, Izv. Math., 85:5 (2021), 972–1007 | DOI | DOI | MR | Zbl

[10] Platonov V. P., Fedorov G. V., “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Math. Surveys, 75:4 (2020), 785–787 | DOI | DOI | MR | Zbl

[11] Platonov V. P., Zhgoon V. S., Fedorov G. V., “On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field”, Dokl. Math., 98:2 (2018), 430–434 | DOI | MR | Zbl

[12] Platonov V. P., Petrunin M. M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | DOI | MR | Zbl

[13] Platonov V. P., Fedorov G. V., “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | MR | Zbl

[14] Hickerson D., “Length of period simple continued fraction expansion of $\sqrt{d}$”, Pacific Journal of Mathematics, 46:2 (1973), 429–432 | DOI | MR | Zbl

[15] Cohn J., “The length of the period of the simple continued fraction of $d^{1/2}$”, Pacific Journal of Mathematics, 71:1 (1977), 21–32 | DOI | MR | Zbl

[16] Mkaouar M., “Fractions continues et series formelles algebriques reduites”, Portugaliae Mathematica, 58:4 (2001), 439–448 | MR | Zbl

[17] Hbaib M., Mkaouar M., Tounsi K., “Un critere de transcendance dans le corps des series formelles $\mathbb{F}_q((X^{-1}))$”, J. Number Theory, 116 (2006), 140–149 | DOI | MR | Zbl

[18] Basma A., “On the continued fraction period for a square root of polynomial in $\mathbb{F}_q[X]$”, Journal for Algebra and Number Theory Academia, 5:3 (2015), 81–89 | MR

[19] Schinzel A., “On some problems of the arithmetical theory of continued fractions”, Acta Arith., 6 (1960/1961), 393–413 | DOI | MR

[20] Schinzel A., “On some problems of the arithmetical theory of continued fractions. II”, Acta Arith., 7 (1961/1962), 287–298 | DOI | MR

[21] Kubert D. S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl

[22] Van Der Poorten A. J., Tran X. C., “Periodic continued fractions in elliptic function fields”, International Algorithmic Number Theory Symposium, Springer, Berlin–Heidelberg, 2002, 390–404 | MR | Zbl

[23] Scherr Z. L., Rational polynomial pell equations, thesis, The University of Michigan, 2016 | Zbl

[24] Sadek M., “Periodic continued fractions and elliptic curves over quadratic fields”, Journal of Symbolic Computation, 76 (2016), 200–218 | DOI | MR | Zbl

[25] Berry T. G., “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., 55 (1990), 259–266 | DOI | MR | Zbl

[26] Platonov V. P., Zhgoon V. S., Fedorov G. V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | MR | Zbl

[27] Platonov V. P., Fedorov G. V., “The criterion of periodicity of continued fractions of key elements in hyperelliptic fields”, Chebyshevskii Sbornik, 20:1 (2019), 246–258 (In Russ.)

[28] Fedorov G. V., “On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers”, Chebyshevskii Sbornik, 20:4 (2019), 357–370 (In Russ.) | MR | Zbl

[29] Fedorov G. V., “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517 | DOI | MR | Zbl

[30] Avanzi R. M., Zannier U. M., “Genus one curves defined by separated variable polynomials and a polynomial Pell equation”, Acta Arithmetica, 99 (2001), 227–256 | DOI | MR | Zbl

[31] Van Der Poorten A. J., “Some facts that should be better known, especially about rational functions” (Banff, AB, 1988), Number theory and applications, 265, 1989, 497–528 | MR | Zbl

[32] Dobrovol'skii N. M., Dobrovol'skii N. N., Sobolev D. K., Soboleva V.Ṅ., “Classification purely real algebraic irrationalities”, Chebyshevskii Sbornik, 18:2 (2017), 98–128 (In Russ.) | DOI | MR | Zbl

[33] Rosenlicht M., “Equivalence relations on algebraic curves”, Ann. of Math., 56:3 (1952), 169–191 | DOI | MR | Zbl

[34] Rosenlicht M., “Generalized Jacobian varieties”, Ann. of Math., 59:3 (1954), 505–530 | DOI | MR | Zbl

[35] Serre Jean-Pierre, Algebraic groups and class fields, Springer-Verlag, New York, 1988 | MR | Zbl

[36] Zhgoon V. S., “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | DOI | MR

[37] Zannier U., “Hyperelliptic continued fractions and generalized Jacobians”, American Journal of Mathematics, 141:1 (2019), 1–40 | DOI | MR | Zbl