Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_3_a8, author = {G.V. Fedorov}, title = {On estimates for the period length of functional continued fractions over algebraic number fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {162--189}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/} }
TY - JOUR AU - G.V. Fedorov TI - On estimates for the period length of functional continued fractions over algebraic number fields JO - Čebyševskij sbornik PY - 2023 SP - 162 EP - 189 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/ LA - ru ID - CHEB_2023_24_3_a8 ER -
G.V. Fedorov. On estimates for the period length of functional continued fractions over algebraic number fields. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 162-189. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a8/
[1] Artin E., “Quadratische Körper im Gebiete der höheren Kongruenzen. I”, Math. Z., 19:1 (1924), 153–246 | DOI | MR
[2] Platonov V. P., “Number-theoretic properties of hyperelliptic fields and the torsion problem in Jacobians of hyperelliptic curves over the rational number field”, Russian Math. Surveys, 69:1 (2014), 1–34 | DOI | DOI | MR | Zbl
[3] Adams W. W., Razar M. J., “Multiples of points on elliptic curves and continued fractions”, Proc. London Math. Soc., 41:2 (1980), 481–498 | DOI | MR | Zbl
[4] Schmidt W. M., “On continued fractions and diophantine approximation in power series fields”, Acta arithmetica, 95:2 (2000), 139–166 | DOI | MR | Zbl
[5] Platonov V. P., Benyash-Krivets V. V., “Groups of S-units in hyperelliptic fields and continued fractions”, Sb. Math., 200:11 (2009), 1587–1615 | DOI | DOI | MR | Zbl
[6] Platonov V. P., Fedorov G. V., “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559 | DOI | DOI | MR | Zbl
[7] Fedorov G. V., “On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields”, Dokl. Math., 106:1 (2022), 259–264 | DOI | MR | Zbl
[8] Platonov V. P., Zhgoon V. S., Petrunin M. M., “On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials $f$ over algebraic number fields”, Sb. Math., 213:3 (2022), 412–442 | DOI | DOI | MR | Zbl
[9] Platonov V. P., Fedorov G. V., “On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields”, Izv. Math., 85:5 (2021), 972–1007 | DOI | DOI | MR | Zbl
[10] Platonov V. P., Fedorov G. V., “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Math. Surveys, 75:4 (2020), 785–787 | DOI | DOI | MR | Zbl
[11] Platonov V. P., Zhgoon V. S., Fedorov G. V., “On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field”, Dokl. Math., 98:2 (2018), 430–434 | DOI | MR | Zbl
[12] Platonov V. P., Petrunin M. M., “Groups of S-units and the problem of periodicity of continued fractions in hyperelliptic fields”, Proc. Steklov Inst. Math., 302 (2018), 336–357 | DOI | DOI | MR | Zbl
[13] Platonov V. P., Fedorov G. V., “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756 | DOI | MR | Zbl
[14] Hickerson D., “Length of period simple continued fraction expansion of $\sqrt{d}$”, Pacific Journal of Mathematics, 46:2 (1973), 429–432 | DOI | MR | Zbl
[15] Cohn J., “The length of the period of the simple continued fraction of $d^{1/2}$”, Pacific Journal of Mathematics, 71:1 (1977), 21–32 | DOI | MR | Zbl
[16] Mkaouar M., “Fractions continues et series formelles algebriques reduites”, Portugaliae Mathematica, 58:4 (2001), 439–448 | MR | Zbl
[17] Hbaib M., Mkaouar M., Tounsi K., “Un critere de transcendance dans le corps des series formelles $\mathbb{F}_q((X^{-1}))$”, J. Number Theory, 116 (2006), 140–149 | DOI | MR | Zbl
[18] Basma A., “On the continued fraction period for a square root of polynomial in $\mathbb{F}_q[X]$”, Journal for Algebra and Number Theory Academia, 5:3 (2015), 81–89 | MR
[19] Schinzel A., “On some problems of the arithmetical theory of continued fractions”, Acta Arith., 6 (1960/1961), 393–413 | DOI | MR
[20] Schinzel A., “On some problems of the arithmetical theory of continued fractions. II”, Acta Arith., 7 (1961/1962), 287–298 | DOI | MR
[21] Kubert D. S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[22] Van Der Poorten A. J., Tran X. C., “Periodic continued fractions in elliptic function fields”, International Algorithmic Number Theory Symposium, Springer, Berlin–Heidelberg, 2002, 390–404 | MR | Zbl
[23] Scherr Z. L., Rational polynomial pell equations, thesis, The University of Michigan, 2016 | Zbl
[24] Sadek M., “Periodic continued fractions and elliptic curves over quadratic fields”, Journal of Symbolic Computation, 76 (2016), 200–218 | DOI | MR | Zbl
[25] Berry T. G., “On periodicity of continued fractions in hyperelliptic function fields”, Arch. Math., 55 (1990), 259–266 | DOI | MR | Zbl
[26] Platonov V. P., Zhgoon V. S., Fedorov G. V., “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696 | DOI | MR | Zbl
[27] Platonov V. P., Fedorov G. V., “The criterion of periodicity of continued fractions of key elements in hyperelliptic fields”, Chebyshevskii Sbornik, 20:1 (2019), 246–258 (In Russ.)
[28] Fedorov G. V., “On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers”, Chebyshevskii Sbornik, 20:4 (2019), 357–370 (In Russ.) | MR | Zbl
[29] Fedorov G. V., “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517 | DOI | MR | Zbl
[30] Avanzi R. M., Zannier U. M., “Genus one curves defined by separated variable polynomials and a polynomial Pell equation”, Acta Arithmetica, 99 (2001), 227–256 | DOI | MR | Zbl
[31] Van Der Poorten A. J., “Some facts that should be better known, especially about rational functions” (Banff, AB, 1988), Number theory and applications, 265, 1989, 497–528 | MR | Zbl
[32] Dobrovol'skii N. M., Dobrovol'skii N. N., Sobolev D. K., Soboleva V.Ṅ., “Classification purely real algebraic irrationalities”, Chebyshevskii Sbornik, 18:2 (2017), 98–128 (In Russ.) | DOI | MR | Zbl
[33] Rosenlicht M., “Equivalence relations on algebraic curves”, Ann. of Math., 56:3 (1952), 169–191 | DOI | MR | Zbl
[34] Rosenlicht M., “Generalized Jacobian varieties”, Ann. of Math., 59:3 (1954), 505–530 | DOI | MR | Zbl
[35] Serre Jean-Pierre, Algebraic groups and class fields, Springer-Verlag, New York, 1988 | MR | Zbl
[36] Zhgoon V. S., “On generalized jacobians and rational continued fractions in the hyperelliptic fields”, Chebyshevskii Sbornik, 18:4 (2017), 208–220 (In Russ.) | DOI | MR
[37] Zannier U., “Hyperelliptic continued fractions and generalized Jacobians”, American Journal of Mathematics, 141:1 (2019), 1–40 | DOI | MR | Zbl