The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 139-161
Voir la notice de l'article provenant de la source Math-Net.Ru
Several extremal problems on the best mean-square approximation of the functions $f,$ on a semiaxis with a power-law weight are solved in the paper, which can be applied in solving various problems. Exact Jackson–Stechkin-type inequalities are obtained for some classes of functions in which the values of the best approximations are estimated from above in terms of $k$-th order Hankel moduli of smoothness.
Keywords:
Jackson inequality, moduli of smoothness, best approximation, exact constants.
@article{CHEB_2023_24_3_a7,
author = {T. E. Tileubayev},
title = {The exact {Jackson--Stechkin} inequality in $L_{2,\mu_{\alpha}}$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {139--161},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/}
}
T. E. Tileubayev. The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 139-161. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/