The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 139-161

Voir la notice de l'article provenant de la source Math-Net.Ru

Several extremal problems on the best mean-square approximation of the functions $f,$ on a semiaxis with a power-law weight are solved in the paper, which can be applied in solving various problems. Exact Jackson–Stechkin-type inequalities are obtained for some classes of functions in which the values of the best approximations are estimated from above in terms of $k$-th order Hankel moduli of smoothness.
Keywords: Jackson inequality, moduli of smoothness, best approximation, exact constants.
@article{CHEB_2023_24_3_a7,
     author = {T. E. Tileubayev},
     title = {The exact {Jackson--Stechkin} inequality in $L_{2,\mu_{\alpha}}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--161},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/}
}
TY  - JOUR
AU  - T. E. Tileubayev
TI  - The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 139
EP  - 161
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/
LA  - ru
ID  - CHEB_2023_24_3_a7
ER  - 
%0 Journal Article
%A T. E. Tileubayev
%T The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
%J Čebyševskij sbornik
%D 2023
%P 139-161
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/
%G ru
%F CHEB_2023_24_3_a7
T. E. Tileubayev. The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 139-161. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/