The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 139-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several extremal problems on the best mean-square approximation of the functions $f,$ on a semiaxis with a power-law weight are solved in the paper, which can be applied in solving various problems. Exact Jackson–Stechkin-type inequalities are obtained for some classes of functions in which the values of the best approximations are estimated from above in terms of $k$-th order Hankel moduli of smoothness.
Keywords: Jackson inequality, moduli of smoothness, best approximation, exact constants.
@article{CHEB_2023_24_3_a7,
     author = {T. E. Tileubayev},
     title = {The exact {Jackson--Stechkin} inequality in $L_{2,\mu_{\alpha}}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--161},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/}
}
TY  - JOUR
AU  - T. E. Tileubayev
TI  - The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 139
EP  - 161
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/
LA  - ru
ID  - CHEB_2023_24_3_a7
ER  - 
%0 Journal Article
%A T. E. Tileubayev
%T The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$
%J Čebyševskij sbornik
%D 2023
%P 139-161
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/
%G ru
%F CHEB_2023_24_3_a7
T. E. Tileubayev. The exact Jackson--Stechkin inequality in $L_{2,\mu_{\alpha}}$. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 139-161. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a7/

[1] Korneichuk N. P., Exact constants in approximation theory, Nauka, M., 1987 (in Russian)

[2] Chernykh N. I., “On the Jackson inequality in $L_2$”, Tr. MIAN SSSR, 88, 1967, 71–74 | Zbl

[3] Chernykh N. I., “On the best approximation of periodic functions by trigonometric polynomials in $L_2$”, Math. notes, 2:5 (1967), 513–522 | MR | Zbl

[4] Shalaev B. B., “Widths in $L_2$ of Classes of Differentiable Functions Defined by Continuity of Higher Order Modules”, Ukr. Mat. jour., 3:1 (1991), 104–107 | MR

[5] Ibragimov I. I., Nasibov V. I., “Estimate of the best approximation of an integrable function on the real axis using entire functions of finite degree”, Dokl. acad. USSR Academy of Sciences, 194:5 (1970), 1013–1016 | MR | Zbl

[6] Popov V. Yu., “On Exact Constants in Jackson's Inequalities for the Best Spherical Root-Mean-Square Approximations”, Russian Math. (Iz. VUZ), 12 (1970), 67–80 | MR | Zbl

[7] Arestov V. V., Popov V. Yu., “Jackson's inequalities on the sphere in L2”, Russian Math.jour., 39:8 (1981), 11–18 | MR | Zbl

[8] Babenko A. G, “Exact Jackson-Stechkin inequality for $L_2(R^{m})$”, Tr. IMM UB RAS, 5:3 (1998), 183–198 | DOI | MR | Zbl | Zbl

[9] M. Sh. Shabozov, G. A. Yusupov, “Best Polynomial Approximations in L2 of Classes of $2\pi$-Periodic Functions and Exact Values of Their Widths”, Math. Notes, 90:5 (2011), 748–757 | DOI | DOI | MR | Zbl

[10] J. Li, Liu Y. P., “The Jackson inequality for the best $L^2$-approximation of functions on $[0, 1]$ with the weight x”, Numer. Math. Theory Methods Appl., 1:3 (2008), 340–356 | MR | Zbl

[11] J. Li, Y. P Liu, Chun-Mei Su, “Jackson inequality and widths of function classes in $L^2([0,1], x^{2\nu+1})$”, Journal of Complexity, 28 (2012), 582–596 | DOI | MR | Zbl

[12] E. E. Berdysheva, “Two related extremal problems for entire functions of several variables”, Math. Notes, 66:3 (1999), 271–282 | DOI | DOI | MR | Zbl

[13] Moskovsky A. V., “Jackson's theorems in the spaces $L_p(R_n)$ and $L_p,\lambda(R+)$”, Izv. TulGU. ser. mathematics, mechanics, informatics, 1997, no. 3(194), 44–70 | MR

[14] D. V. Gorbachev, “Extremum problems for entire functions of exponential spherical type”, Math. Notes, 68:2 (2000), 159–166 | DOI | DOI | MR | Zbl

[15] V. I. Ivanov, “On the Sharpness of Jackson's Inequality in the Spaces Lp on the Half-Line with Power Weight”, Math. Notes, 98:5 (2015), 742–751 | DOI | DOI | MR | Zbl

[16] M. G. Esmaganbetov, “Widths of classes from $L_2[0,2\pi]$ and the minimization of exact constants in Jackson-type inequalities”, Math. Notes, 65:6 (1999), 689–693 | DOI | DOI | MR | Zbl

[17] Shabozov M. Sh., Tukhliev K., Murodov K.N., “Exact estimates of the rate of convergence of Fourier-Bessel ranks and values of n-widths of some classes of functions”, Questions of Computational and Applied Mathematics, 2015, no. 2, 40–47

[18] Taikov L. V., “An inequality containing the best approximations and the modulus of continuity of functions from $L_2$”, Math. notes, 20:3 (1976), 433–438 | MR | Zbl

[19] G. Bateman G., Erdeyi A., Higher transcendental functions. Bessel functions, parabolic cylinder functions, orthogonal polynomials, Nauka, M., 1966

[20] Levitan V. M., “Expansion in Bessel functions in Fourier series and integrals”, Uspekhi Mat., 6:2(42) (1951), 102–143 | MR | Zbl

[21] Platonov S. S., “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048 | DOI | DOI | MR | Zbl

[22] Abilov V. A., Abilova F. V., Kerimov M. K., “Sharp estimates for the convergence rate of Fourier-Bessel series”, Comput. Math. Math. Phys., 55:6 (2015), 907–916 | DOI | DOI | MR | Zbl

[23] Abilov V. A., Abilova F. V., Kerimov M. K., “Sharp estimates for the rate of convergence of double Fourier series in classical orthogonal polynomials”, Comput. Math. Math. Phys., 55:7 (2015), 1094–1102 | DOI | DOI | MR | Zbl

[24] Platonov S. S., “Generalized Bessel shifts and some problems in the theory of approximations of functions in the $L_2$ metric. I”, Proceedings of PSU, 7 (2000), 70–83

[25] Stein I. M , Weiss G., Introduction to harmonic analysis on Euclidean spaces, Mir, M., 1974

[26] Yudin V. A., “Extremal properties of functions and designs on a torus”, Mat. Notes, 61:4 (1997), 637–640 | DOI | Zbl

[27] Lizorkin P. I., Nikol'skii S. M., “A theorem concerning approximation on the sphere”, Anal. Math., 9 (1983), 207–221 | DOI | MR | Zbl

[28] Rustamov Kh. P., “On the approximation of functions on a sphere”, Izv.RAN. Ser. Mat., 57:5 (1993), 127–148 | MR | Zbl

[29] Nikol'skii S. M., Lizorkin P. I., “Approximation of functions on a sphere”, Izv.RAN. Ser. math., 51:3 (1987), 635–651 | Zbl

[30] Vakarchuk S. B., Shabozov M. Sh., V. I. Zabutnaya, “Structural characteristics of functions from $L^2$ and the exact values of widths of some functional classes”, Journal of Mathematical Sciences, 206:1 (2015), 97–114 | DOI | MR | Zbl

[31] Gorbachev D. V., “An estimate of an optimal argument in the sharp multidimensional Jackson-Stechkin L2-inequality”, Proc. Steklov Inst. Math., 2015, Suppl. 1, 70–78 | MR

[32] Watson N. G., Theory of Bessel functions, Izd. foreign liters, M., 1949

[33] Shabozov M. Sh., “Widths of some classes of periodic functions in the space $L^2[0, 2\pi]$, $L^2$”, Mat. notes, 87:4 (2010), 616–623 | DOI | Zbl

[34] Vakarchuk S.B., Shabozov M.Sh., and Langarshoev M.R., “On the best mean square approximations by entire functions of exponential type in $L^2(R)$ and mean $\nu$-widths of some functional classes”, Russian Math.(Iz. VUZ), 2014, no. 7, 30–48 | Zbl

[35] Vakarchuk S.B., “Jackson - type inequalities for the special moduli of continuity on the entire real axis and the exact values of mean $\nu$-widths for the classes of functions in the space $L^2(R)$”, Ukrainian Mathematical Journal, 66:6 (2014), 827–856 | DOI | MR | Zbl

[36] Ligun A.A., “Some inequalities between best approximations and moduli of continuity in the space $L^2$”, Mat. notes, 24:6 (1978), 785–792 | MR | Zbl