Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_3_a6, author = {L. N. Romakina}, title = {Constant rations for inflection points of a cubic curve with a node or an acnode}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {122--138}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a6/} }
L. N. Romakina. Constant rations for inflection points of a cubic curve with a node or an acnode. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 122-138. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a6/
[1] Atanasyan L. S., Bazylev V. T., Geometry, Textbook for students of physical and mathematical faculties of pedagogical institutes. In 2 p., v. 2, Education, M., 1987, 352 pp.
[2] Klein F., Non-Euclidean geometry, ONTI NKTP USSR, M.–L., 1936, 356 pp.
[3] Rosenfeld B. A., Non-Euclidean spaces, Science, M., 1969, 548 pp.
[4] Romakina L. N., Geometry of a hyperbolic plane of positive curvature, in 4 party, v. 1, Trigonometry, Publishing House Sarat. university, Saratov, 2013, 244 pp.
[5] Romakina L. N., Geometry of co-Euclidean and copseudo-Euclidean planes, Publishing house «Scientific book», Saratov, 2008, 279 pp.
[6] Romakina L. N., “The study of remarkable curves of the pseudo-Euclidean plane in the system of training teachers of mathematics”, Collection of scientific papers, Teacher – student : problems, searches, finds, 8, IC «Science», Saratov, 2010, 61–64
[7] Romakina L. N., “Rations for the inflection points of a cubic curve with a node or acnode”, Algebra, number theory and discrete geometry : modern problems, applications and problems of history, Proceedings of the XVII Intern. conf., dedicated centenary of the birth of professors B. M. Bredikhin, V. I. Nechaev and S. B. Stechkin, Tula state. ped. univ. of L. N. Tolstoy, 2020, 427–429
[8] Savelov A. A., Plane curves. Systematics, properties, applications (reference guide), State publishing house of physical and mathematical literature, M., 1960, 294 pp.
[9] Smogorgevsky A. S., Stolova E. S., Handbook of third order plane curve theory, State publishing house of physical and mathematical literature, M., 1961, 263 pp.
[10] Walker R., Algebraic curves, Foreign Languages Publishing House, M., 1952, 236 pp.
[11] Shafarevich I.R., “Foundations of algebraic geometry”, Uspekhi Mat. Nauk, 24:6(150) (1969), 3–184 | DOI | MR | Zbl
[12] Lawrence J. D., A Catalog of Special Plane Curves, Dover, New York, 2014
[13] Romakina L. N., Bessonov L.V., Chernyshkova A.A., “Modeling of curls of Agnesi in non-Euclidean planes”, AIP Conference Proceedings, 2037, American Institute of Physics, 2018, 020022-1–020022-6 | DOI
[14] Romakina L. N., “Construction of cubic curves with a node”, Beitr Algebra Geom., 60:4 (2019), 761–781 | DOI | MR | Zbl
[15] Weisstein E. W., Maclaurin Trisectrix. MathWorld — a wolfram web resource, http://mathworld.wolfram.com/MaclaurinTrisectrix.html