Generalization of Waring's problem for nine almost proportional cubes
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 71-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is obtained for the number of representations of a sufficiently large natural $N$ as a sum of nine cubes of natural numbers $x_i$, $i=\overline{1,9}$, satisfying the conditions $$ |x_i^3-\mu_iN|\le H, \mu_1+\ldots+\mu_9=1 H\ge N^{1-\frac1{30}+\varepsilon} , $$ where $\mu_1,\ldots,\mu_9$ — positive fixed numbers. This result is a strengthening of E.M.Wright's theorem.
Keywords: Waring's problem, almost proportional Summands, H. Weil's short exponential sum, small neighborhood of centers of major arcs.
@article{CHEB_2023_24_3_a4,
     author = {Z. Kh. Rakhmonov},
     title = {Generalization of {Waring's} problem for nine almost proportional cubes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {71--94},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Generalization of Waring's problem for nine almost proportional cubes
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 71
EP  - 94
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/
LA  - ru
ID  - CHEB_2023_24_3_a4
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Generalization of Waring's problem for nine almost proportional cubes
%J Čebyševskij sbornik
%D 2023
%P 71-94
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/
%G ru
%F CHEB_2023_24_3_a4
Z. Kh. Rakhmonov. Generalization of Waring's problem for nine almost proportional cubes. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 71-94. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/

[1] Waring E. M., Meditationes algebraicae, Cambridge, 1770 | MR

[2] Hilbert D., “Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem)”, Mathematische Annalen, 67 (1909), 281–300 | DOI | MR

[3] Hardy G. H., Littlwood J. E., “Some problems of "Partitio Numerorum". I: A new solution of Waring's problem”, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 1920, 33–54

[4] Vinogradov I. M., Selected works, Izdat. Akad. Nauk SSSR, M., 1952, 436 pp. (in Russian) | MR

[5] Vinogradov I.M., “Novoe reshenie problemy Varinga”, Doklady Akademii nauk, 1934, no. 2, 337–341 (in Russian) | Zbl

[6] Vinogradov I. M., “On an upper bound for $G(n)$”, Izv. Akad. Nauk SSSR Ser. Mat., 23:5 (1959), 637–642 (in Russian) | MR | Zbl

[7] Karatsuba A. A., “On the function $G(n)$ in Waring's problem”, Math. USSR-Izv., 27:2 (1986), 239–249 | DOI | MR | Zbl | Zbl

[8] Wooley T. D., “Large improvements in Waring's problem”, Ann of Math., 2(135):1 (1992), 131–164 | DOI | MR | Zbl

[9] Davenport H., “On Waring's Problem for Fourth Powers”, Annals of Mathematics Second Series, 40:4 (1939), 731–747 | DOI | MR | Zbl

[10] Linnik Yu. V., “On the representation of large numbers as sums of seven cubes”, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., 35 (1942), 162 | MR | Zbl

[11] Vaughan R.C., “On Waring's problem for cubes”, J. Reine Angew. Math., 365 (1986), 122–170 | MR | Zbl

[12] Wright E. M., “Proportionality conditions in Waring's problem”, Mathematische Zeitschrift, 38 (1934), 730–746 | DOI | MR | Zbl

[13] Wright E. M., “An extension of Waring's problem”, Philos. Trans. R. Soc. Lond. Ser. A, 232 (1933), 1–26 | DOI | Zbl

[14] Rakhmonov, Z. Kh., “The Estermann cubic problem with almost equal summands”, Mathematical Notes, 95:3–4 (2014), 407–417 | DOI | DOI | MR | MR | Zbl

[15] Rakhmonov Z. Kh., Nazrubloev N. N., Rakhimov A.O., “Short Weyl sums and their applications”, Chebyshevskii Sbornik, 16:1 (2015), 232–247 (in Russian) | MR | Zbl

[16] Rakhmonov Z. Kh., “Estermann's ternary problem with almost equal summands”, Mathematical Notes, 74:4 (2003), 534–542 | DOI | DOI | MR | Zbl

[17] Rakhmonov Z. Kh., “Short Weyl sums”, Uchenyye zapiski Orlovskogo universiteta. Seriya yestestvennyye, tekhnicheskiye i meditsinskiye nauki, 2013, no. 6-2, 194–203 (in Russian)

[18] Rakhmonov Z. Kh., Azamov A.Z., Nazrubloev N. N., “Of short Weyl's exponential sum in minor arcs”, Doklady Akademii nauk Respubliki Tajikistan, 61:7-8 (2018), 609–614 (in Russian)

[19] Rakhmonov Z. Kh., Mirzoabdugafurov K. I., “Waring's problem for cubes with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 51:2 (2008), 83–86 (in Russian)

[20] Rakhmonov Z. Kh., Azamov A.Z., “An asymptotic formula in Waring's problem for fourth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 54:3 (2011), 34–42 (in Russian) | MR

[21] Rakhmonov Z. Kh., Nazrubloev N. N., “Waring's problem for fifth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 57:11-12 (2014), 823–830 (in Russian)

[22] Rakhmonov F. Z., Rakhimov A. O., “On an additive problem with almost equal summands”, Issledovaniya po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 8, Saratovskiy natsional'nyy issledovatel'skiy gosudarstvennyy universitet im. N.G. Chernyshevskogo, 2016, 87–89 (in Russian)

[23] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, Walter de Gruyter, Berlin-New-York, 2004, 554 pp. | MR | MR | Zbl

[24] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Perev. s angl., v. 1, Osnovnye operatsii analiza, Izd. 2-e, Fizmatgiz, M., 1963, 342 pp.; Whittaker G. E., Watson T. N., A Course of Modern Analysis, v. 1, The processes of analysis, Cambridge University Press, Cambridge, 1915, 620 pp. ; v. 2, The transcendental functions | MR

[25] Vaughan R. C., The Hardy-Littlewood method, Cambridge Tracts in Mathematics, 80, Cambridge University Press, Cambridge, 1981, 172 pp. | MR | MR | Zbl