Generalization of Waring's problem for nine almost proportional cubes
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 71-94

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is obtained for the number of representations of a sufficiently large natural $N$ as a sum of nine cubes of natural numbers $x_i$, $i=\overline{1,9}$, satisfying the conditions $$ |x_i^3-\mu_iN|\le H, \mu_1+\ldots+\mu_9=1 H\ge N^{1-\frac1{30}+\varepsilon} , $$ where $\mu_1,\ldots,\mu_9$ — positive fixed numbers. This result is a strengthening of E.M.Wright's theorem.
Keywords: Waring's problem, almost proportional Summands, H. Weil's short exponential sum, small neighborhood of centers of major arcs.
@article{CHEB_2023_24_3_a4,
     author = {Z. Kh. Rakhmonov},
     title = {Generalization of {Waring's} problem for nine almost proportional cubes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {71--94},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
TI  - Generalization of Waring's problem for nine almost proportional cubes
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 71
EP  - 94
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/
LA  - ru
ID  - CHEB_2023_24_3_a4
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%T Generalization of Waring's problem for nine almost proportional cubes
%J Čebyševskij sbornik
%D 2023
%P 71-94
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/
%G ru
%F CHEB_2023_24_3_a4
Z. Kh. Rakhmonov. Generalization of Waring's problem for nine almost proportional cubes. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 71-94. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/