Generalization of Waring's problem for nine almost proportional cubes
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 71-94
Voir la notice de l'article provenant de la source Math-Net.Ru
An asymptotic formula is obtained for the number of representations of a sufficiently large natural $N$ as a sum of nine cubes of natural numbers $x_i$, $i=\overline{1,9}$, satisfying the conditions $$ |x_i^3-\mu_iN|\le H, \mu_1+\ldots+\mu_9=1 H\ge N^{1-\frac1{30}+\varepsilon} , $$ where $\mu_1,\ldots,\mu_9$ — positive fixed numbers. This result is a strengthening of E.M.Wright's theorem.
Keywords:
Waring's problem, almost proportional Summands, H. Weil's short exponential sum, small neighborhood of centers of major arcs.
@article{CHEB_2023_24_3_a4,
author = {Z. Kh. Rakhmonov},
title = {Generalization of {Waring's} problem for nine almost proportional cubes},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {71--94},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/}
}
Z. Kh. Rakhmonov. Generalization of Waring's problem for nine almost proportional cubes. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 71-94. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a4/