Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 42-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a pair of ($2$-dimensional) $8$-vertex simplicial toroidal polyhedra (each polyhedron without self-intersection) with same $1$-dimensional skeleton in (Euclidean) $3$-space, which do not have a single common $2$-face, and the union of the $2$-skeletons of these two polyhedra gives a geometric realization of the $2$-skeleton of the $4$-dimensional hyperoctahedron in $3$-space. Also, we construct an example of a pair of $6$-vertex simplicial polyhedral projective planes with the same $1$-skeleton in $4$-space, which do not have a single common $2$-face, and the union of these projective planes gives a geometric realization of the $2$-skeleton of the $5$-hypertetrahedron in $4$-space. Finally, it is shown how to imagine, figuratively, the atoms in the molecule of methane ${\rm{CH}}_4$ “linked” by a pair of internally disjoint spanning polyhedral Möbius strips.
Keywords: polyhedron, triangulation, torus, projective plane, Möbius strip, Schlegel diagram, GeoGebra.
@article{CHEB_2023_24_3_a2,
     author = {S. Lawrence and A. S. Lao and M. E. Lao and O. I. Chelyapina},
     title = {Pairs of mutually complementary $2$-dimensional simplicial polyhedra: {Interesting} examples},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {42--55},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/}
}
TY  - JOUR
AU  - S. Lawrence
AU  - A. S. Lao
AU  - M. E. Lao
AU  - O. I. Chelyapina
TI  - Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 42
EP  - 55
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/
LA  - ru
ID  - CHEB_2023_24_3_a2
ER  - 
%0 Journal Article
%A S. Lawrence
%A A. S. Lao
%A M. E. Lao
%A O. I. Chelyapina
%T Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples
%J Čebyševskij sbornik
%D 2023
%P 42-55
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/
%G ru
%F CHEB_2023_24_3_a2
S. Lawrence; A. S. Lao; M. E. Lao; O. I. Chelyapina. Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 42-55. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/

[1] Archdeacon D., Bonnington C. P., Ellis-Monaghan J. A., “How to exhibit toroidal maps in space”, Discrete Comput. Geom., 38:3 (2007), 573–594 | DOI | MR | Zbl

[2] Banchoff T. F., Kühnel W., “Tight polyhedral models of isoparametric families, and PL-taut submanifolds”, Adv. Geom., 7:4 (2007), 613–629 | DOI | MR | Zbl

[3] Barnette D., “Generating the triangulations of the projective plane”, J. Combin. Theory Ser. B, 33:3 (1982), 222–230 | DOI | MR | Zbl

[4] Barnette D., “All triangulations of the projective plane are geometrically realizable in $E\sp{4}$”, Israel J. Math., 44:1 (1983), 75–87 | DOI | MR | Zbl

[5] Bonnington C. P., Nakamoto A., “Geometric realization of a triangulation on the projective plane with one face removed”, Discrete Comput. Geom., 40:1 (2008), 141–157 | DOI | MR | Zbl

[6] Grünbaum B., Convex Polytopes, Graduate Texts in Mathematics, 221, 2nd edition, eds. V. Kaibel, V. Klee and G. M. Ziegler, Springer-Verlag, New York, 2003 | DOI | MR

[7] Lawrencenko, S. A., “Irreducible triangulations of the torus”, Ukrain. Geom. Sb., 30 (1987), 52–62 (Russian) | Zbl

[8] Lavrenchenko S. A., “All self-complementary simplicial $2$-complexes homeomorphic to the torus or the projective plane”, Baku International Topological Conference, Abstracts (Baku, 3-9 October, 1987), v. II, Baku, 1987, 159

[9] Lawrencenko, S. A., Explicit lists of all automorphisms of the irreducible toroidal triangulations and of all toroidal embeddings of their labeled graphs, Report deposited at UkrNIINTI (Ukrainian Scientific Research Institute of Scientific and Technical Information), report No 2779-Uk87, Yangel Kharkov Institute of Radio Electronics, Kharkov, 1 Oct. 1987 (Russian)

[10] Lawrencenko, S. A., “On the number of triangular embeddings of a vertex-labeled graph on the torus”, Ukrain. Geom. Sb., 31 (1988), 76–90 (Russian) | Zbl

[11] Lawrencenko, S. A., Tables of all essentially different triangulations of the projective plane with some interesting graphs, Report deposited at VINITI (Institute of Scientific and Technical Information), report No 613-B89, Lomonosov Moscow State University, M., 25 Jan. 1989 (Russian)

[12] Lawrencenko, S. A., “On the number of triangular packings of a labeled graph in the projective plane”, Ukrain. Geom. Sb., 32 (1989), 71–84 (Russian) | Zbl

[13] Lavrenchenko S. A., “Irreducible triangulations of the torus”, J. Soviet Math., 51:5 (1990), 2537–2543 | DOI | MR | Zbl

[14] Lavrenchenko S. A., “The number of triangular packings of a vertically labeled graph on a torus”, J. Soviet Math., 54:1 (1991), 719–728 | DOI | MR | Zbl

[15] Lavrenchenko S. A., “Number of triangular packings of a marked graph on a projective plane”, J. Soviet Math., 59:2 (1992), 741–749 | DOI | MR

[16] Lawrencenko S., “Polyhedral suspensions of arbitrary genus”, Graphs Combin., 26:4 (2010), 537–548 | DOI | MR | Zbl

[17] Lawrencenko S., Magomedov A. M., “Generating the triangulations of the torus with the vertex-labeled complete $4$-partite graph $K_{2,2,2,2}$”, Symmetry, 13:8 (2021), 1418 | DOI

[18] Maslova, Y. V., Petrov, M. V., “Lavrenchenko's polyhedron of genus one”, Some Actual Problems of Modern Mathematics and Mathematical Education, Herzen Readings (St. Petersburg, April 9-13, 2018), Russian Herzen State Pedagogical University, St. Petersburg, 2018, 162–168 (Russian)

[19] Steinitz E., “Polyeder und Raumeinteilungen”, Enzykl. Math. Wiss. Part 3AB12 (Geometrie), 1922, 1–139

[20] Chávez M.-J., Lawrencenko S., Quintero A., Villar M.-T., “Irreducible triangulations of the Möbius band”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014, no. 2, 44–50 | MR

[21] Chen B., Kwak J. H., Lawrencenko S., “Weinberg bounds over nonspherical graphs”, J. Graph Theory, 33:4 (2000), 220–236 | 3.0.CO;2-Z class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[22] Chen B., Lawrencenko S., “Structural characterization of projective flexibility”, Discrete Math., 188:1-3 (1998), 233–238 | DOI | MR | Zbl

[23] Chen H., Schlenker J.-M., “Weakly inscribed polyhedra”, Trans. Amer. Math. Soc. Ser. B, 9 (2022), 415–449 | DOI | MR | Zbl