Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 42-55
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct an example of a pair of ($2$-dimensional) $8$-vertex simplicial toroidal polyhedra (each polyhedron without self-intersection) with same $1$-dimensional skeleton in (Euclidean) $3$-space, which do not have a single common $2$-face, and the union of the $2$-skeletons of these two polyhedra gives a geometric realization of the $2$-skeleton of the $4$-dimensional hyperoctahedron in $3$-space. Also, we construct an example of a pair of $6$-vertex simplicial polyhedral projective planes with the same $1$-skeleton in $4$-space, which do not have a single common $2$-face, and the union of these projective planes gives a geometric realization of the $2$-skeleton of the $5$-hypertetrahedron in $4$-space. Finally, it is shown how to imagine, figuratively, the atoms in the molecule of methane ${\rm{CH}}_4$ “linked” by a pair of internally disjoint spanning polyhedral Möbius strips.
Keywords:
polyhedron, triangulation, torus, projective plane, Möbius strip, Schlegel diagram, GeoGebra.
@article{CHEB_2023_24_3_a2,
author = {S. Lawrence and A. S. Lao and M. E. Lao and O. I. Chelyapina},
title = {Pairs of mutually complementary $2$-dimensional simplicial polyhedra: {Interesting} examples},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {42--55},
publisher = {mathdoc},
volume = {24},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/}
}
TY - JOUR AU - S. Lawrence AU - A. S. Lao AU - M. E. Lao AU - O. I. Chelyapina TI - Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples JO - Čebyševskij sbornik PY - 2023 SP - 42 EP - 55 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/ LA - ru ID - CHEB_2023_24_3_a2 ER -
%0 Journal Article %A S. Lawrence %A A. S. Lao %A M. E. Lao %A O. I. Chelyapina %T Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples %J Čebyševskij sbornik %D 2023 %P 42-55 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/ %G ru %F CHEB_2023_24_3_a2
S. Lawrence; A. S. Lao; M. E. Lao; O. I. Chelyapina. Pairs of mutually complementary $2$-dimensional simplicial polyhedra: Interesting examples. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 42-55. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a2/