Solving the problem of partial hedging through a dual problem
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 26-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of partial hedging studied in [20]. In this problem, the risk of shortfall is estimated using a robust convex loss functional $L(\cdot)$. In our work, we formulate a dual problem different from the dual problem in [20], we prove the absence of a duality gap, and also the existence of a solution to the primal and dual problems. In addition, we obtain the results of [20] under weaker assumptions using an approach related to the application of theorems of convex analysis.
Keywords: convex duality, real-valued convex risk measures, robust loss functionals, partial hedging.
@article{CHEB_2023_24_3_a1,
     author = {S. S. Leshchenko},
     title = {Solving the problem of partial hedging through a dual problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/}
}
TY  - JOUR
AU  - S. S. Leshchenko
TI  - Solving the problem of partial hedging through a dual problem
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 26
EP  - 41
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/
LA  - ru
ID  - CHEB_2023_24_3_a1
ER  - 
%0 Journal Article
%A S. S. Leshchenko
%T Solving the problem of partial hedging through a dual problem
%J Čebyševskij sbornik
%D 2023
%P 26-41
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/
%G ru
%F CHEB_2023_24_3_a1
S. S. Leshchenko. Solving the problem of partial hedging through a dual problem. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 26-41. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/

[1] Attouch H., Brézis H., “Duality for the sum of convex functions in general banach spaces”, Aspects of mathematics and its applications, 34 (1986), 125–133 | DOI | MR

[2] Brannath W., Schachermayer W., “A Bipolar Theorem for Subsets of $L_0^{+}(\Omega, \mathcal{F}, P)$”, Séminaire de Probabilités XXXIII, Lecture Notes in Mathematics, 1709, 1999, 349–354 | DOI | MR | Zbl

[3] Cheridito P., Li T., “Risk measures on Orlicz hearts”, Mathematical Finance, 19:2 (2009), 189–214 | DOI | MR | Zbl

[4] Delbaen F., Schachermayer W., The Mathematics of Arbitrage, Springer, Berlin–Heidelberg, 2006, 371 pp. | MR | Zbl

[5] Föllmer H., Leukert P., “Efficient hedging: Cost versus shortfall risk”, Finance Stochastics, 4:2 (2000), 117–146 | DOI | MR | Zbl

[6] Gushchin A. A., “A characterization of maximin tests for two composite hypotheses”, Mathematical Methods of Statistics, 24:2 (2015), 110–121 | DOI | MR | Zbl

[7] Gushchin A. A., Mordecki E., “Bounds on option prices for semimartingale market models”, Proceedings of the Steklov Institute of Mathematics, 237 (2002), 73–113 | MR | Zbl

[8] Gushchin A. A., Leshchenko S. S., “Testing hypotheses for measures with different masses: Four optimization problems”, Theory Probab. Math. Stat., 101 (2020), 109–117 | DOI | MR | Zbl

[9] Hernández-Hernández D., Treviño-Aguilar E., “Efficient hedging of European options with robust convex loss functionals: A dual-representation formula”, Mathematical Finance, 21:1 (2011), 99–115 | DOI | MR | Zbl

[10] Kirch M., Efficient Hedging in Incomplete Markets under Model Uncertainty, PhD thesis, Humboldt Universitat zu Berlin, 2002, 144 pp. | Zbl

[11] Kozek A., “Convex Integral Functionals on Orlicz Spaces”, Annales Societatis Mathematicae Polonae. Series I: Commentationes Mathematicae, 21 (1979), 109–135 | MR | Zbl

[12] Nakano Y., “Minimizing coherent risk measures of shortfall in discrete-time models under cone constraints”, Applied Mathematical Finance, 10:2 (2003), 163–181 | DOI | Zbl

[13] Nakano Y., “Efficient hedging with coherent risk measure”, Journal of Mathematical Analysis and Applications, 293:1 (2004), 345–354 | DOI | MR | Zbl

[14] Nakano Y., “Partial hedging for defaultable claims”, Advances in Mathematical Economics, 14 (2011), 127–145 | DOI | MR | Zbl

[15] Rudloff B., “Convex hedging in incomplete markets”, Applied Mathematical Finance, 14:5 (2007), 437–452 | DOI | MR | Zbl

[16] Rudloff B., “Coherent hedging in incomplete markets”, Quantitative Finance, 9:2 (2009), 197–206 | DOI | MR | Zbl

[17] Rockafellar R. T., “Integrals which are convex functionals, II”, Pacific J. Math., 39 (1971), 439–469 | DOI | MR | Zbl

[18] Rockafellar R. T., “Integral functionals, normal integrands and measurable selections”, Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics, 543, Springer, Berlin–Heidelberg, 1976, 157–207 | DOI | MR

[19] Rockafellar R. T., Wets R., Variational analysis, Springer-Verlag, Berlin–Heidelberg, 1998, 736 pp. | MR | Zbl

[20] Treviño-Aguilar E., “Duality in a problem of static partial hedging under convex constraints”, SIAM Journal on Financial Mathematics, 6 (2015), 1152–1170 | DOI | MR | Zbl

[21] Xu M., Minimizing shortfall risk using duality approach — an application to partial hedging in incomplete markets, PhD thesis, Carnegie Mellon University, 2004, 93 pp. | MR

[22] Xu M., “Risk Measure Pricing and Hedging in Incomplete Markets”, Ann. Finance, 2:1 (2006), 51–71 | DOI