Solving the problem of partial hedging through a dual problem
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 26-41

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of partial hedging studied in [20]. In this problem, the risk of shortfall is estimated using a robust convex loss functional $L(\cdot)$. In our work, we formulate a dual problem different from the dual problem in [20], we prove the absence of a duality gap, and also the existence of a solution to the primal and dual problems. In addition, we obtain the results of [20] under weaker assumptions using an approach related to the application of theorems of convex analysis.
Keywords: convex duality, real-valued convex risk measures, robust loss functionals, partial hedging.
@article{CHEB_2023_24_3_a1,
     author = {S. S. Leshchenko},
     title = {Solving the problem of partial hedging through a dual problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {26--41},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/}
}
TY  - JOUR
AU  - S. S. Leshchenko
TI  - Solving the problem of partial hedging through a dual problem
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 26
EP  - 41
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/
LA  - ru
ID  - CHEB_2023_24_3_a1
ER  - 
%0 Journal Article
%A S. S. Leshchenko
%T Solving the problem of partial hedging through a dual problem
%J Čebyševskij sbornik
%D 2023
%P 26-41
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/
%G ru
%F CHEB_2023_24_3_a1
S. S. Leshchenko. Solving the problem of partial hedging through a dual problem. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 26-41. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a1/