Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_2_a9, author = {O. Kh. Karimov and Z. Zh. Hakimova}, title = {Coercive estimates, separability and coercive solvability of a nonlinear elliptic differential operator in a weight space}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {197--213}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a9/} }
TY - JOUR AU - O. Kh. Karimov AU - Z. Zh. Hakimova TI - Coercive estimates, separability and coercive solvability of a nonlinear elliptic differential operator in a weight space JO - Čebyševskij sbornik PY - 2023 SP - 197 EP - 213 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a9/ LA - ru ID - CHEB_2023_24_2_a9 ER -
%0 Journal Article %A O. Kh. Karimov %A Z. Zh. Hakimova %T Coercive estimates, separability and coercive solvability of a nonlinear elliptic differential operator in a weight space %J Čebyševskij sbornik %D 2023 %P 197-213 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a9/ %G ru %F CHEB_2023_24_2_a9
O. Kh. Karimov; Z. Zh. Hakimova. Coercive estimates, separability and coercive solvability of a nonlinear elliptic differential operator in a weight space. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 197-213. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a9/
[1] Everitt W. N., Gierz M., “Some properties of the domains of certain differential operators”, Proc. London Math. Soc., 23 (1971), 301–324 | DOI | MR | Zbl
[2] Everitt W. N.,Gierz M., “On some properties of the powers of a family self-adjoint differential expressions”, Proc. London Math. Soc., 24 (1972), 149–170 | DOI | MR | Zbl
[3] Everitt W. N., Gierz M., “Some inequalities associated with certain differential operators”, Math. Z., 126 (1972), 308–326 | DOI | MR | Zbl
[4] Everitt W. N.,Gierz M., “Inequalities and separation for Schrodinger -type operators in $L_2(R^n)$”, Proc. Roy. Soc. Edinburg, Sect A, 79 (1977), 149–170 | MR
[5] Boimatov, K. Kh., “Theorems of separability”, Doklady Akad. Nauk SSSR, 213:5 (1973), 1009–1011 | Zbl
[6] Boimatov, K. Kh., “Separability theorems, weighted spaces and their applications”, Proc.of the Math. Inst. of the USSR Academy of Sciences im.Steklova, 170, 1984, 37–76 | Zbl
[7] Boimatov, K. Kh., “Coercive estimates and separability for second order elliptic differential equations”, Doklady Akad. Nauk SSSR, 301:5 (1988), 1033–1036
[8] Boimatov, K. Kh., Saripov, A., “Coercive properties of nonlinear Schrodinger and Dirac operators”, Dokl. Mathematics, 326:3 (1992), 393–398 | Zbl
[9] Boimatov, K. Kh., “Coercive estimates and separability theorems for differential operators of the second order”, Mathematical notes, 46:6 (1989), 110–112 | MR | Zbl
[10] Otelbaev, M., “Coercitive estimates and separability theorems for elliptic equations in $R^n$”, Proc.of the Math. Inst. of the USSR Academy of Sciences im.Steklova, 161, 1983, 195–217 | MR | Zbl
[11] Muratbekov, M. B., Muratbekov, M. M., Ospanov, K. N., “Coercive solvability of odd-order differential equations and its applications”, Dokl. Mathematics, 435:3 (2010), 310–313 | Zbl
[12] Zayed E. M. E., “Separation for the biharmonic differential operator in the Hilbert space associated with existence and uniqueness theorem”, J. Math. Anal. Appl., 337 (2008), 659–666 | DOI | MR | Zbl
[13] Zayed E. M. E., Salem Omram, “Separation for triple-harmonic differential operator in the Hilbert”, International J. Math. Combin., 4 (2010), 13–23 | Zbl
[14] Zayed E. M. E., Mohamed A. S., Atia H. A., “Inequalities and separation for the Laplace-Beltrami differential operator in Hilbert spaces”, J. Math. Anal. Appl., 336 (2007), 81–92 | DOI | MR | Zbl
[15] Zayed E. M. E., “Separation for an elliptic differential operators in a weighted its application to an existence and uniqueness theorem”, Dynamits of continuous, discrede and impulsive systems.Series A: Mathematical Analysis, 22 (2015), 409–421 | MR | Zbl
[16] Mohamed A. S., H. A, Atia, “Separation of the general second elliptic differential operator potential in the weighted weighted Hilbert spaces”, Applied Mathematics and Computation, 162 (2005), 155–163 | DOI | MR | Zbl
[17] Karimov, O. Kh., “On separation of second order nonlinear differential operators with matrix coefficients”, Izvestiya Akademii nauk Respubliki Tajikistan. Otdeleniye fiziko-matematicheskikh, khimicheskikh, geologicheskikh i tekhnicheskikh nauk, 2014, no. 4(157), 42–50 (in Russian)
[18] Karimov, O. Kh., “On separation of nonlinear second order nonlinear differential operators with matrix coefficients in a weighted space”, Doklady Akademii nauk Respubliki Tajikistan, 58:8 (2015), 665–673 (in Russian)
[19] Karimov. O. Kh., “Coercive properties and separability biharmonic operator with matrix potential”, Ufa mathematical journal, 9:1 (2017), 55–62 | Zbl
[20] Karimov, O. Kh., “On coercive solvability the schrodinger equation in a Hilbert space”, Doklady Akademii nauk Respubliki Tajikistan, 61:11–12 (2018), 829–836 (in Russian)
[21] Karimov O. Kh., “On the separation property of nonlinear second-order differential operators with matrix coefficients in weighted spaces”, Journal of mathematical sciences, 241:5 (2019), 589–595 | DOI | MR | Zbl