Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_2_a7, author = {M. V. Dontsova}, title = {Solvability conditions of the {Cauchy} problem for a system of first-order quasi-linear equations, where ${f_1}(t,x), {f_2}(t,x), {S_1}, {S_2}$ are given functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {165--178}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a7/} }
TY - JOUR AU - M. V. Dontsova TI - Solvability conditions of the Cauchy problem for a system of first-order quasi-linear equations, where ${f_1}(t,x), {f_2}(t,x), {S_1}, {S_2}$ are given functions JO - Čebyševskij sbornik PY - 2023 SP - 165 EP - 178 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a7/ LA - ru ID - CHEB_2023_24_2_a7 ER -
%0 Journal Article %A M. V. Dontsova %T Solvability conditions of the Cauchy problem for a system of first-order quasi-linear equations, where ${f_1}(t,x), {f_2}(t,x), {S_1}, {S_2}$ are given functions %J Čebyševskij sbornik %D 2023 %P 165-178 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a7/ %G ru %F CHEB_2023_24_2_a7
M. V. Dontsova. Solvability conditions of the Cauchy problem for a system of first-order quasi-linear equations, where ${f_1}(t,x), {f_2}(t,x), {S_1}, {S_2}$ are given functions. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 165-178. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a7/
[1] Alekseenko, S. N., Dontsova, M. V., “The investigation of a so lvability of the system of equations, describing a distribution of electrons in an electric field of sprite”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 2012:14, 34–41
[2] Alekseenko, S. N., Dontsova, M. V., “The local existence of a bounded solution of the system of equations, describing a distribution of electrons in low-pressure plasma in an electric field of sprite”, Matematicheskij vestnik pedvuzov i universitetov Volgo-Vyatskogo regiona, 2013, no. 15, 52–59
[3] Alekseenko, S. N., Dontsova, M. V., “The solvability conditions of the system of long waves in a water rectangular channel, the depth of which varies along the axis”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 18:2 (2016), 115–124 | Zbl
[4] Alekseenko, S. N., Shemyakina, T. A., Dontsova, M. V., “Nonlocal solvability conditions for systems of first order partial differential equations”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko - matematicheskie nauki, 2013, no. 3(177), 190–201
[5] Dontsova, M. V., “The nonlocal existence of a bounded solution of the Cauchy problem for a system of two first order partial differential equations with continuous and bounded right-hand sides”, Vestnik TvGU. Seriya: Prikladnaya matematika, 2014, no. 3, 21–36
[6] Dontsova, M. V., “Nonlocal solvability conditions of the Cauchy problem for a system of first order partial differential equations with continuous and bounded right-hand sides”, Vestnik VGU. Seriya: Fizika. Matematika, 2014, no. 4, 116–130 | MR | Zbl
[7] Dontsova, M. V., “Nonlocal solvability conditions for Cauchy problem for a system of first order partial differential equations with special right-hand sides”, Ufa Mathematical Journal, 6:4 (2014), 71–82 | MR | Zbl
[8] Dontsova, M. V., “Study of solvability for a system of first order partial differential equations with free terms”, Materialy Mezhdunarodnogo molodezhnogo nauchnogo foruma «LOMONOSOV-2014» (Moscow, 2014) (1 electron. wholesale. disc (DVD-ROM))
[9] Dontsova, M. V., “Investigation of the solvability of a system of quasilinear equations of the first order”, Mezhdunarodnaya konferenciya po differencial'nym uravneniyam i dinamicheskim sistemam, Tezisy dokladov (Suzdal, 2016), 68 | MR
[10] Dontsova, M. V., “The nonlocal solvability conditions for a system of quasilinear equations of the first order special right-hand sides”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 20:4 (2018), 384–394
[11] Imanaliev, M. I., Alekseenko, S. N., “To the question of the existence of a smooth bounded solution for a system of two first-order nonlinear partial differential equations”, Doklady RAN, 379:1 (2001), 16–21 | MR | Zbl
[12] Imanaliev, M. I., Pankov, P. S., Alekseenko, S. N., “Method of an additional argument”, Vestnik KazNU. Ceriya matematika, mekhanika, informatika, 2006, no. 1, Spec. vypusk, 60–64
[13] Shemyakina, T. A., “Conditions for the existence and dierentiability of solutions of Frankl in the hyperbolic case”, Zhurnal Srednevolzhskogo matematicheskogo obshchestva, 13:2 (2011), 127–131 | Zbl
[14] Shemyakina, T. A., “The theorem on existence of a bounded solution of the Cauchy problem for the Frankl system of hyperbolic type”, Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko - matematicheskie nauki, 2012, no. 2(146), 130–140
[15] Alekseenko S. N., Dontsova M. V., Pelinovsky D. E., “Global solutions to the shallow-water system with a method of an additional argument”, Applicable Analysis, 96:9 (2017), 1444–1465 | DOI | MR | Zbl