Convergence domains of the zeta function of some monoids of natural numbers
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 154-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the question of the domain of absolute convergence of the zeta series for some monoids of natural numbers. Two main cases are considered: monoids with $C$ power$\theta$-density and monoids with $C$-logarithmic $\theta$-power density. A new concept is introduced — strong $\vec{C}=(C_1,\ldots,C_n)$ power $\vec{\theta}$ is the density. For the zeta function of a sequence of natural numbers $A$ with a strong $\vec{C}=(C_1,\ldots,C_n)$power $\vec{\theta}$-density proved the theorem according to which the zeta function $\zeta(A|\alpha)$ is an analytical function of the variable $\alpha$, regular at $\sigma>0$, having $n$ poles of the first order, and deductions are found in these poles. For the case of $C$ logarithmic $\theta$-power density, a fundamentally different result is proved: if the monoid $M$ has a $C$ logarithmic$\theta$-power density with $0\theta1$, then the zeta function of the monoid $M$ has a holomorphic half-plane $\sigma>0$ and the imaginary axis is the singularity line. In the third section, the question of the analytical continuation of the zeta function of the monoid of natural numbers in three cases is considered: for a monoid of $k$-th powers of natural numbers, for a set of natural numbers free of $k$-th powers, and for the union of two monoids of $k$-th powers of natural numbers when the exponents of the degrees are mutually prime numbers. In all three cases, it is shown that the analytic continuation exists on the entire complex plane. Functional equations are found for each of the three cases. They all have a fundamentally different look. In addition, new properties of the zeta function that are missing from the Riemann zeta function are found for each analytic continuation in the critical band. In conclusion, promising, relevant topics for further research are listed.
Keywords: Riemann zeta function, Dirichlet series, the zeta function of the monoid of natural numbers.
@article{CHEB_2023_24_2_a6,
     author = {M. N. Dobrovol'skii and N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {Convergence domains of the zeta function of some monoids of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {154--164},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a6/}
}
TY  - JOUR
AU  - M. N. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - Convergence domains of the zeta function of some monoids of natural numbers
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 154
EP  - 164
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a6/
LA  - ru
ID  - CHEB_2023_24_2_a6
ER  - 
%0 Journal Article
%A M. N. Dobrovol'skii
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T Convergence domains of the zeta function of some monoids of natural numbers
%J Čebyševskij sbornik
%D 2023
%P 154-164
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a6/
%G ru
%F CHEB_2023_24_2_a6
M. N. Dobrovol'skii; N. N. Dobrovol'skii; N. M. Dobrovol'skii. Convergence domains of the zeta function of some monoids of natural numbers. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 154-164. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a6/

[1] Bredikhin, B.M., “Free numerical semigroups with power densities”, Doklady Akademii nauk SSSR, 118:5 (1958), 855–857

[2] I. M. Vinogradov, “A new evaluation of the function $\zeta(1+it)$”, Izv.v. AN SSSR. Ser. matem., 22:2 (1958), 161–164 | MR | Zbl

[3] M. N. Dobrovol'skii, N. N. Dobrovol'skii, N. M. Dobrovol'skii, I. B. Koguhov, I. Yu. Rebrova, “Monoid of pro ducts of zeta functions of monoids of natural numb ers”, Chebyshevskii sbornik, 23:3 (2022), 102–117 | DOI | MR | Zbl

[4] N. M. Dobrovolsky, U. M. Pachev, V. N. Chubarikov, “Boris Maximovich Bredikhin and his scientific and pedagogical activity'”, Chebyshevskii sbornik, 21:4 (2020), 19–28 | DOI | MR | Zbl

[5] Dobrovolsky N. N., “The zeta-function is the monoid of natural numbers with unique factorization”, Chebyshevskii Sbornik, 18:4 (2017), 188–208 | DOI | MR

[6] N. N. Dobrovol'skii, “On monoids of natural numbers with unique factorization into prime elements”, Chebyshevskii sbornik, 19:1 (2018), 79–105 | DOI | MR | Zbl

[7] N. N. Dobrovol'skii, “The zeta function of monoids with a given abscissa of absolute convergence”, Chebyshevskii sbornik, 19:2 (2018), 142–150 | DOI | MR | Zbl

[8] N. N. Dobrovol'skii, “One mo del Zeta function of the monoid of natural numbers”, Chebyshevskii sbornik, 20:1 (2019), 148–163 | DOI | Zbl

[9] N. N. Dobrovol'skii, “Abscissa of Absolute Convergence of a Class of Generalized Euler Products”, Math. Notes, 109:3 (2021), 483–488 | DOI | DOI | MR | Zbl

[10] N. N. Dobrovol'skii, “Distribution of simple elements in some monoids of natural numbers”, Math. Notes, 2022

[11] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “About «zagrobelna the series» for the zeta function of monoids with exponential sequence of simple”, Chebyshevskii sbornik, 19:1 (2018), 106–123 | DOI | MR | Zbl

[12] N. N. Dobrovol'skii, M. N. Dobrovol'skii, N. M. Dobrovol'skii, I. N. Balaba, I. Yu. Rebrova, “Dirichlet series algebra of a monoid of natural numbers”, Chebyshevskii sbornik, 20:1 (2019), 180–196 | MR | Zbl

[13] N. N. Dobrovol'skii, N. M. Dobrovol'skii, I. Yu. Rebrova, A. V. Rodionov, “Monoids of natural numbers in the numerical-theoretical method in the approximate analysis”, Chebyshevskii sbornik, 20:1 (2019), 164–179 | DOI

[14] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the number of prime elements in certain monoids of natural numbers”, Chebyshevskii sbornik, 19:2 (2018), 123–141 | DOI | Zbl

[15] N. N. Dobrovol'skii, A. O. Kalinina, M. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the monoid of quadratic residues”, Chebyshevskii sbornik, 19:3 (2018), 95–108 | DOI | Zbl

[16] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems, Solid Mechanics and Its Applications, 211, 2014, 23–62 | DOI | MR | Zbl

[17] N. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “Inverse problem for a monoid with an exponential sequence of Prime numbers”, Chebyshevskii sbornik, 21:1 (2020), 165–185 | DOI | MR

[18] N. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “The inverse problem for a basic monoid of type $q$”, Chebyshevskii sbornik, 23:4 (2022), 59–71

[19] N. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “Entropy for some monoids of natural numbers”, Chebyshevskii sbornik, 23:5 (2022), 57–71 | DOI | MR | Zbl

[20] N. M. Korobov, “Estimates of Weyl sums and distribution of primes”, Dokl. USSR Academy OF Sciences, 123:1 (1958), 28–31 | Zbl