Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_2_a4, author = {A. Kh. Galstyan}, title = {Boundary stability in the {Fermat--Steiner} problem in hyperspaces over finite-dimensional normed spaces}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {81--128}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a4/} }
TY - JOUR AU - A. Kh. Galstyan TI - Boundary stability in the Fermat--Steiner problem in hyperspaces over finite-dimensional normed spaces JO - Čebyševskij sbornik PY - 2023 SP - 81 EP - 128 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a4/ LA - ru ID - CHEB_2023_24_2_a4 ER -
A. Kh. Galstyan. Boundary stability in the Fermat--Steiner problem in hyperspaces over finite-dimensional normed spaces. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 81-128. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a4/
[1] Ivanov A. O., Tuzhilin A. A., Branching solutions to one–dimensional variational problems, World Sci. Publ., River Edge, NJ, 2001, xxii+342 pp. | MR | Zbl
[2] Cieslik D., Steiner minimal trees, Nonconvex Optim. Appl., 23, Kluwer Acad. Publ., Dordrecht, 1998, xii+319 pp. | DOI | MR | Zbl
[3] Ivanov A. O., Tuzhilin A. A., “Minimal networks: a review”, Advances in dynamical systems and control, Stud. Syst. Decis. Control, 69, Springer, Cham, 2016, 43–80 | DOI | MR | Zbl
[4] Hwang F. K., Richards D. S., Winter P., The Steiner Tree Problem, North–Holland, 1992, 339 pp. | MR | Zbl
[5] Jarnik V., Kössler M., “On minimal graphs containing n given points”, Časopis P̌est. Mat. Fys., 63:8 (1934), 223–235 | DOI | Zbl
[6] Courant R., Robbins H., What is mathematics? An elementary approach to ideas and methods, 3-rd ed., cor. and ad., Izdatelstvo MCNMO, M., 2001, 568 pp.
[7] Ivanov A., Tropin A., Tuzhilin A., “Fermat–Steiner problem in the metric space of compact sets endowed with Hausdorff distance”, J. Geom., 108:2 (2017), 575–590 | DOI | MR | Zbl
[8] Nadler S. B., Hyperspaces of sets, Marcel Dekker Inc., New York–Basel, 1978, 707 pp. | MR | Zbl
[9] Blackburn C. C., Lund K., Schlicker S., Sigmon P., Zupan A., “An introduction to the geometry of $\mathcal{H}(\mathbb{R}^n)$”, GVSU REU 2007, Grand Valley State Univ., Allendale, MI, 2007
[10] Memoli F., “On the use of Gromov–Hausdorff distances for shape comparison”, Eurographics symposium on point based graphics, The Eurographics Association, Prague, 2007, 81–90
[11] Memoli F., “Some properties of Gromov–Hausdorff distances”, Discrete Comput. Geom., 48:2 (2012), 416–440 | DOI | MR | Zbl
[12] Ivanov A. O., Tuzhilin A. A., “Isometry group of Gromov–Hausdorff space”, Mat. Vesnik, 71:1–2 (2019), 123–154 | MR | Zbl
[13] Galstyan A. Kh., Ivanov A. O., Tuzhilin A. A., “The Fermat–Steiner problem in the space of compact subsets of $\mathbb{R}^m$ endowed with the Hausdorff metric”, Sb. Math., 212:1 (2021), 25–56 | DOI | MR | Zbl
[14] Tropin A. M., “An Estimation of the Length of a Minimal Parametric Network in Hyperspaces under the Deformation of the Boundary Set”, Intelligent systems. Theory and Applications, 25:2 (2021), 81–107 | MR
[15] Mendelson B., Introduction to topology, Dover Publications, 1990, 206 pp. | MR | Zbl
[16] Leonard I. E., Lewis J. E., Geometry of convex sets, Wiley, 2015, 336 pp. | MR
[17] Alimov A. R., Tsarkov I. G., “Connection and other geometric properties of suns and Chebyshev sets”, Fundamental and applied mathematics, 19:4 (2014), 21–91
[18] Schlicker S., “The geometry of the Hausdorff metric”, GVSU REU 2008, Grand Valley State Univ., Allendale, MI, 2008, 11 pp. http://faculty.gvsu.edu/schlicks/HMG2008.pdf
[19] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Institute for Computer Research, M.–Izhevsk, 2004, 512 pp. | MR
[20] Ivanov A. O., Tuzhilin A. A., Geometry of Hausdorff and Gromov–Hausdorff distances: the case of compact sets, Faculty of mechanics and mathematics of MSU, M., 2017, 111 pp.
[21] Galstyan A. Kh., “About the continuity of one operation with convex compacts in finite-dimensional normed spaces”, Chebyshevskii sbornik, 23:5 (2022), 152–160 | DOI | MR | Zbl
[22] Drusvyatskiy D., Convex analysis and nonsmooth optimization, University Lecture, 2020 https://sites.math.washington.edu/d̃drusv/crs/Math_516_2020/bookwithindex.pdf
[23] Galstyan A. Kh., Boundary stability in the Fermat–Steiner problem in hyperspaces over finite-dimensional normed spaces, 2022, arXiv: 2212.01881 | MR | Zbl