The problem of finding a function by its ball means values
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 63-80

Voir la notice de l'article provenant de la source Math-Net.Ru

A classical property of a non-constant $2r$-periodic function on the real axis is that it has no period incommensurable with $r$. One of the multidimensional analogues of this statement is the following well-known theorem of L. Zalcman on two radii: for the existence of a nonzero locally summable function $f:\mathbb{R}^n\to \mathbb{C}$ with nonzero integrals over all balls of radii $r_1$ and $r_2$ in $\mathbb{R}^n$ it is necessary and sufficient that $r_1/r_2\in E_n$, where $E_n$ is the set of all possible ratios of positive zeros of the Bessel function $J_{n/2}$. The condition $r_1/r_2\notin E_n$is equivalent to the equality $\mathcal{Z}_{+}\big(\widetilde{\chi}_{r_1}\big)\cap\mathcal{Z}_{+}\big(\widetilde{\chi}_{r_2}\big)=\varnothing$, where $\chi_{r}$ is the indicator of the ball $B_r=\{x\in\mathbb{R}^n: |x|$, $\widetilde{\chi}_{r}$ is the spherical transform (Fourier-Bessel transform) of the indicator $\chi_{r}$, $\mathcal{Z}_{+}(\widetilde{\chi}_{r})$ is the set of all positive zeros of even entire function $\widetilde{\chi}_{r}$. In terms of convolutions, L. Zalcman's theorem means that the operator $$\mathcal{P}f=(f\ast \chi_{r_1}, f\ast \chi_{r_2}), f\in L^{1,\mathrm{loc}}(\mathbb{R}^n) $$ is injective if and only if $r_1/r_2\notin E_n$. In this paper, a new formula for the inversion of the operator $\mathcal{P}$ is found under the condition $r_1/r_2\notin E_n$. The result obtained significantly simplifies the previously known procedures for recovering a function $f$ from given ball means values $f\ast \chi_{r_1}$ и $f\ast \chi_{r_2}$. The proofs use the methods of harmonic analysis, as well as the theory of entire and special functions.
Keywords: mean periodic functions, radial distributions, two-radii theorem, inversion formulas.
@article{CHEB_2023_24_2_a3,
     author = {N. P. Volchkova and Vit. V. Volchkov},
     title = {The problem of finding a function by its ball means values},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {63--80},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a3/}
}
TY  - JOUR
AU  - N. P. Volchkova
AU  - Vit. V. Volchkov
TI  - The problem of finding a function by its ball means values
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 63
EP  - 80
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a3/
LA  - ru
ID  - CHEB_2023_24_2_a3
ER  - 
%0 Journal Article
%A N. P. Volchkova
%A Vit. V. Volchkov
%T The problem of finding a function by its ball means values
%J Čebyševskij sbornik
%D 2023
%P 63-80
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a3/
%G ru
%F CHEB_2023_24_2_a3
N. P. Volchkova; Vit. V. Volchkov. The problem of finding a function by its ball means values. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 63-80. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a3/