Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_2_a3, author = {N. P. Volchkova and Vit. V. Volchkov}, title = {The problem of finding a function by its ball means values}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {63--80}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a3/} }
N. P. Volchkova; Vit. V. Volchkov. The problem of finding a function by its ball means values. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 63-80. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a3/
[1] Pompéiu D., “Sur certains systèmes d'équations linéaires et sur une propriété intégrale de fonctions de plusieurs variables”, C. R. Acad. Sci. Paris, 188 (1929), 1138–1139
[2] Pompéiu D., “Sur une propriété intégrale de fonctions de deux variables réeles”, Bull. Sci. Acad. Royale Belgique (5), 15 (1929), 265–269 | Zbl
[3] Chakalov L., “Sur un problème de D. Pompeiu”, Annuaire [Godišnik] Univ. Sofia Fac. Phys.-Math., Livre 1, 40 (1944), 1–14 | MR | Zbl
[4] Berenstein, C.A., Struppa, D.C., “Complex analysis and convolution equations”, Several complex variables. $\mathrm{V}$: Complex analysis in partial differential equations and mathematical physics, Encyclopaedia of Mathematical Sciences, 54, 1993, 1–108 | DOI
[5] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approximation by solutions of partial differential equations, 365 (1992), 185–194 | DOI | MR | Zbl
[6] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Radon Transform and Tomography, Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl
[7] Volchkov V. V., Integral Geometry and Convolution Equations, Kluwer Academic Publishers, Dordrecht, 2003 | DOI | MR | Zbl
[8] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009 | DOI | MR | Zbl
[9] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | DOI | MR | Zbl
[10] Delsarte J., “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris Sér. A–B, 246 (1958), 1358–1360 | MR | Zbl
[11] Zalcman L., “Analyticity and the Pompeiu problem”, Arch. Rat. Anal. Mech., 47:3 (1972), 237–254 | DOI | MR | Zbl
[12] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72:3 (1972), 403–416 | DOI | MR | Zbl
[13] Zalcman L., “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl
[14] Berenstein C. A., Taylor B. A., Yger A., “Sur quelques formules explicites de déconvolution”, J. Optics (Paris), 14:2 (1983), 75–82 | DOI | MR
[15] Berenstein C. A., Yger A., “Le problème de la déconvolution”, J. Funct. Anal., 54:2 (1983), 113–160 | DOI | MR | Zbl
[16] Volchkov, V. V., “A definitive version of the local two-radii theorem”, Sb. Math., 186:6 (1995), 783–802 | DOI | MR | Zbl
[17] Berenstein C. A., Yger A., “Analytic Bezout identities”, Adv. Appl. Math., 10:1 (1989), 51–74 | DOI | MR | Zbl
[18] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Analyse Math., 54:1 (1990), 259–287 | DOI | MR | Zbl
[19] Helgason S., Geometric Analysis on Symmetric spaces, Amer. Math. Soc., Providence, Rhode Island, 2008 http://books.google.com/books?vid=ISBN978-1-4704-1266-1 | Zbl
[20] Volchkov, V. V., Volchkov, Vit. V., “Convolution equations in many-dimensional domains and on the Heisenberg reduced group”, Sb. Math., 199:8 (2008), 1139–1168 | DOI | MR | Zbl
[21] Hörmander L., The Analysis of Linear Partial Differential Operators, v. I, Springer-Verlag, New York, 2003 | DOI | MR | Zbl
[22] Helgason S., Groups and Geometric Analysis, Academic Press, New York, 1984 | MR | Zbl
[23] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Higher Transcendental Functions, v. II, McGraw-Hill, New York, 1953 https://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738
[24] Volchkova, N. P., Volchkov, Vit. V., “Deconvolution problem for indicators of segments”, Math. Notes NEFU, 26:3 (2019), 3–14 | DOI | MR
[25] El Harchaoui M., “Inversion de la transformation de Pompéiu locale dans les espaces hyperboliques réel et complexe (Cas de deux boules)”, J. Anal. Math., 67:1 (1995), 1–37 | DOI | MR | Zbl
[26] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternique - Cas des deux boules”, J. Complex Variables, 43:1 (2000), 29–57 | DOI | MR | Zbl
[27] Volchkov, Vit. V., Volchkova, N. P., “Inversion of the local Pompeiu transform on the quaternion hyperbolic space”, Dokl. Math., 64:1 (2001), 90–93 | MR | Zbl | Zbl
[28] Volchkov, Vit. V., Volchkova, N. P., “nversion theorems for the local Pompeiu transformation in the quaternion hyperbolic space”, St. Petersburg Math. J., 15:5 (2004), 753–771 | DOI | MR | Zbl
[29] Volchkov Vit. V., “On functions with given spherical means on symmetric spaces”, J. Math. Sci., 175:4 (2011), 402–412 | DOI | MR | Zbl
[30] Volchkov V. V., Volchkov Vit. V., “Inversion of the local Pompeiu transformation on Riemannian symmetric spaces of rank one”, J. Math. Sci., 2011:2, 328–343 | DOI | MR | Zbl
[31] Volchkov, V. V., Volchkov, Vit. V., “Spherical means on two-point homogeneous spaces and applications”, Ivz. Math., 77:2 (2013), 223–252 | DOI | MR | Zbl
[32] Rubin B., “Reconstruction of functions on the sphere from their integrals over hyperplane sections”, Anal. Math. Phys., 9:4 (2019), 1627–1664 | DOI | MR | Zbl
[33] Salman Y., “Recovering functions defined on the unit sphere by integration on a special family of sub-spheres”, Anal. Math. Phys., 7:2 (2017), 165–185 | DOI | MR | Zbl
[34] Hielscher R., Quellmalz M., “Reconstructing an function on the sphere from its means along vertical slices”, Inverse Probl. Imaging, 10:3 (2016), 711–739 | DOI | MR | Zbl
[35] Vladimirov, V. S., Zharinov, V. V., Equations of mathematical physics, Fizmatlit, M., 2008
[36] Levin, B. Ya., Distribution of roots of entire functions, URSS, M. \, 2022
[37] Ilyin, V. A., Sadovnichiy, V. A., Sendov, Bl. Kh., Mathematical analysis, v. II, Yurayt-Izdat., M., 2013 | MR