Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_2_a14, author = {M. M. Khasanov and I. D. Rakhimov}, title = {Integration of the {KdV} equation of negative order with a free term in the class of periodic functions}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {266--275}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/} }
TY - JOUR AU - M. M. Khasanov AU - I. D. Rakhimov TI - Integration of the KdV equation of negative order with a free term in the class of periodic functions JO - Čebyševskij sbornik PY - 2023 SP - 266 EP - 275 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/ LA - ru ID - CHEB_2023_24_2_a14 ER -
%0 Journal Article %A M. M. Khasanov %A I. D. Rakhimov %T Integration of the KdV equation of negative order with a free term in the class of periodic functions %J Čebyševskij sbornik %D 2023 %P 266-275 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/ %G ru %F CHEB_2023_24_2_a14
M. M. Khasanov; I. D. Rakhimov. Integration of the KdV equation of negative order with a free term in the class of periodic functions. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 266-275. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/
[1] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR
[2] Novikov S.P., “The periodic problem for the Korteweg-de vries equation”, Funct Anal Its Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl
[3] Dubrovin B.A., Novikov S.P., “Periodic and conditionally periodic analogues of multisoliton solutions of the Korteweg-de Vries equation”, ZhETF, 67:12 (1974), 2131–2143
[4] Marchenko V.A., “Korteweg-de Vries periodic problem”, Math. Sat., 95:3 (1974), 331–356 | Zbl
[5] Dubrovin B.A., “Periodic Problem for the Korteweg-de Vries Equation in the Class of Finite-Gap Potentials”, Funct. analysis and application, 9:3 (1975), 41–51 | MR | Zbl
[6] Its A.R., Matveev V.B., “Finite-gap Schrödinger operators and $N$-soliton solutions of the Korteweg-de Vries equation”, Teoret. mat. Phys., 23:1 (1975), 51–68 | MR
[7] Lax P., “Periodic solutions of the KdV equations”, Lecture in Appl. Math. AMS, 15 (1974), 85–96 | MR
[8] Lax P., “Periodic Solutions of the KdV equation”, Comm. Pure and Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl
[9] Melnikov V.K., Method for integrating the Korteweg-de Vries equation with a self-consistent source, Dubna, 1988
[10] Khasanov A.B., Yakhshimuratov A.B., “On the Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Teoret. mat. Phys., 164:2 (2010), 214–221 | DOI | Zbl
[11] Yakhshimuratov A.B., “Integration of the Korteweg-de Vries equation with a special free term in the class of periodic functions”, Ufimskii Matem. magazine, 3:4 (2011), 144–150 | MR | Zbl
[12] Verosky J.M., “Negative powers of Olver recursion operators”, J. Math. Phys., 32 (1991), 1733–1736 | DOI | MR | Zbl
[13] Lou S.Y., “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, J. Math. Phys., 35 (1994), 2390–2396 | DOI | MR | Zbl
[14] Degasperis A., Procesi M., “Asymptotic integrabilit”, Symmetry and perturbation theory, eds. A. Degasperis, G. Gaeta, World Scientific, 1999, 23–37 | MR | Zbl
[15] G. P., Qiao Z.J., “Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition”, Mathematical Physics, Analysis and Geometry, 10 (2007), 205–225 | DOI | MR | Zbl
[16] Qiao Z.J., Fan E.G., “Negative-order Kortewe-de Vries equations”, Phys. Rev., 86 (2012), 016601
[17] Chen J.B., “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, Int. J. Geom. Methods Mod. Phys., 15:03 (2018), 1–34 | DOI | MR
[18] Qiao Z.J., Li J.B., “Negative-order KdV equation with both solitons and kink wave solutions”, Euro. Phys. Lett., 94 (2011), 50003 | DOI | MR
[19] Zhao S., Sun Y., “A Discrete negative order potential Korteweg-de Vries equation”, Z. Naturforsch., 71:12A (2016), 1151–1158 | DOI
[20] Chen J., “Quasi-periodic solutions to the negative-order KdV hierarchy”, Int. J. Geom. Methods Mod. Phys., 15 (2019), 1850040 | DOI | MR
[21] Rodriguez M., Li J., Qiao Z., “Negative Order KdV equation with no solitary traveling waves”, Mathematics, 10 (2022), 48 | DOI
[22] Wazwaz A., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves Random Complex Media, 27 (2017), 768 | DOI | MR
[23] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm-Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI | MR | Zbl
[24] Titchmarsh E.Ch., Eigenfunction Expansions Associated with Second-Order Differential Equations, In 2 vols., v. 2, IL, M., 1961, 556 pp.
[25] Magnus W., Winkler W., Hill's equation, Interscience Wiley, New York, 1966 | MR
[26] Stankevich I.V., “On a Problem of Spectral Analysis for the Hill Equation”, DAN SSSR, 192:1 (1970), 34–37 | Zbl
[27] Marchenko V.A., Ostrovsky I.V., “Characterization of the spectrum of the Hill operator”, Math. Sat., 97 (1975), 540–606 | Zbl
[28] Trubowitz E., “The inverse problem for periodic potentials”, Comm. Pure and Appl. Math., 30 (1977), 321–337 | DOI | MR | Zbl
[29] Levitan B.M., Sargsyan I.S., Sturm-Liouville and Dirac operators, Nauka, M., 1988 | MR