Integration of the KdV equation of negative order with a free term in the class of periodic functions
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 266-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the KdV equation of negative order with a free term in the class of periodic functions. It is shown that the KdV equation of negative order with a free term in the class of periodic functions can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm–Liouville operator with a periodic potential associated with the solution of a negative-order KdV equation with a free term in the class of periodic functions is determined. The results obtained make it possible to apply the inverse problem method to the solution of the KdV equation of negative order with a free term in the class of periodic functions.
Keywords: KdV of negative order, self-consistent source, inverse spectral problem, Dubrovin–Trubovits system of equations.
@article{CHEB_2023_24_2_a14,
     author = {M. M. Khasanov and I. D. Rakhimov},
     title = {Integration of the {KdV} equation of negative order with a free term in the class of periodic functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {266--275},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/}
}
TY  - JOUR
AU  - M. M. Khasanov
AU  - I. D. Rakhimov
TI  - Integration of the KdV equation of negative order with a free term in the class of periodic functions
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 266
EP  - 275
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/
LA  - ru
ID  - CHEB_2023_24_2_a14
ER  - 
%0 Journal Article
%A M. M. Khasanov
%A I. D. Rakhimov
%T Integration of the KdV equation of negative order with a free term in the class of periodic functions
%J Čebyševskij sbornik
%D 2023
%P 266-275
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/
%G ru
%F CHEB_2023_24_2_a14
M. M. Khasanov; I. D. Rakhimov. Integration of the KdV equation of negative order with a free term in the class of periodic functions. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 266-275. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a14/

[1] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI | MR

[2] Novikov S.P., “The periodic problem for the Korteweg-de vries equation”, Funct Anal Its Appl., 8:3 (1974), 236–246 | DOI | MR | Zbl

[3] Dubrovin B.A., Novikov S.P., “Periodic and conditionally periodic analogues of multisoliton solutions of the Korteweg-de Vries equation”, ZhETF, 67:12 (1974), 2131–2143

[4] Marchenko V.A., “Korteweg-de Vries periodic problem”, Math. Sat., 95:3 (1974), 331–356 | Zbl

[5] Dubrovin B.A., “Periodic Problem for the Korteweg-de Vries Equation in the Class of Finite-Gap Potentials”, Funct. analysis and application, 9:3 (1975), 41–51 | MR | Zbl

[6] Its A.R., Matveev V.B., “Finite-gap Schrödinger operators and $N$-soliton solutions of the Korteweg-de Vries equation”, Teoret. mat. Phys., 23:1 (1975), 51–68 | MR

[7] Lax P., “Periodic solutions of the KdV equations”, Lecture in Appl. Math. AMS, 15 (1974), 85–96 | MR

[8] Lax P., “Periodic Solutions of the KdV equation”, Comm. Pure and Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl

[9] Melnikov V.K., Method for integrating the Korteweg-de Vries equation with a self-consistent source, Dubna, 1988

[10] Khasanov A.B., Yakhshimuratov A.B., “On the Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Teoret. mat. Phys., 164:2 (2010), 214–221 | DOI | Zbl

[11] Yakhshimuratov A.B., “Integration of the Korteweg-de Vries equation with a special free term in the class of periodic functions”, Ufimskii Matem. magazine, 3:4 (2011), 144–150 | MR | Zbl

[12] Verosky J.M., “Negative powers of Olver recursion operators”, J. Math. Phys., 32 (1991), 1733–1736 | DOI | MR | Zbl

[13] Lou S.Y., “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, J. Math. Phys., 35 (1994), 2390–2396 | DOI | MR | Zbl

[14] Degasperis A., Procesi M., “Asymptotic integrabilit”, Symmetry and perturbation theory, eds. A. Degasperis, G. Gaeta, World Scientific, 1999, 23–37 | MR | Zbl

[15] G. P., Qiao Z.J., “Cuspons and smooth solitons of the Degasperis-Procesi equation under inhomogeneous boundary condition”, Mathematical Physics, Analysis and Geometry, 10 (2007), 205–225 | DOI | MR | Zbl

[16] Qiao Z.J., Fan E.G., “Negative-order Kortewe-de Vries equations”, Phys. Rev., 86 (2012), 016601

[17] Chen J.B., “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, Int. J. Geom. Methods Mod. Phys., 15:03 (2018), 1–34 | DOI | MR

[18] Qiao Z.J., Li J.B., “Negative-order KdV equation with both solitons and kink wave solutions”, Euro. Phys. Lett., 94 (2011), 50003 | DOI | MR

[19] Zhao S., Sun Y., “A Discrete negative order potential Korteweg-de Vries equation”, Z. Naturforsch., 71:12A (2016), 1151–1158 | DOI

[20] Chen J., “Quasi-periodic solutions to the negative-order KdV hierarchy”, Int. J. Geom. Methods Mod. Phys., 15 (2019), 1850040 | DOI | MR

[21] Rodriguez M., Li J., Qiao Z., “Negative Order KdV equation with no solitary traveling waves”, Mathematics, 10 (2022), 48 | DOI

[22] Wazwaz A., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves Random Complex Media, 27 (2017), 768 | DOI | MR

[23] Kuznetsova M., “Necessary and sufficient conditions for the spectra of the Sturm-Liouville operators with frozen argument”, Applied Mathematics Letters, 131 (2022), 108035 | DOI | MR | Zbl

[24] Titchmarsh E.Ch., Eigenfunction Expansions Associated with Second-Order Differential Equations, In 2 vols., v. 2, IL, M., 1961, 556 pp.

[25] Magnus W., Winkler W., Hill's equation, Interscience Wiley, New York, 1966 | MR

[26] Stankevich I.V., “On a Problem of Spectral Analysis for the Hill Equation”, DAN SSSR, 192:1 (1970), 34–37 | Zbl

[27] Marchenko V.A., Ostrovsky I.V., “Characterization of the spectrum of the Hill operator”, Math. Sat., 97 (1975), 540–606 | Zbl

[28] Trubowitz E., “The inverse problem for periodic potentials”, Comm. Pure and Appl. Math., 30 (1977), 321–337 | DOI | MR | Zbl

[29] Levitan B.M., Sargsyan I.S., Sturm-Liouville and Dirac operators, Nauka, M., 1988 | MR