About the ideal economic situation - the growth of capital and the function of consumption in some models of economic growth
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 256-265.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the Ramsey — Kass — Koopmans economic growth model. We investigated the monotonicity of the functions $C(t)$ and $K(t)$ under a special initial condition. Our results are obtained using an auxiliary system of differential equations, which is similar to the original system of differential equations arising in the case of constancy of the stationary rate of savings.
Keywords: mathematical model, Ramsey — Kass — Koopmans problem, monotony of the function of saving and capital, competitive households, stationary savings rate.
@article{CHEB_2023_24_2_a13,
     author = {A. I. Kozko and L. M. Luzhina and A. Yu. Popov and V. G. Chirskii},
     title = {About the ideal economic situation - the growth of capital and the function of consumption in some models of economic growth},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {256--265},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a13/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - L. M. Luzhina
AU  - A. Yu. Popov
AU  - V. G. Chirskii
TI  - About the ideal economic situation - the growth of capital and the function of consumption in some models of economic growth
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 256
EP  - 265
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a13/
LA  - ru
ID  - CHEB_2023_24_2_a13
ER  - 
%0 Journal Article
%A A. I. Kozko
%A L. M. Luzhina
%A A. Yu. Popov
%A V. G. Chirskii
%T About the ideal economic situation - the growth of capital and the function of consumption in some models of economic growth
%J Čebyševskij sbornik
%D 2023
%P 256-265
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a13/
%G ru
%F CHEB_2023_24_2_a13
A. I. Kozko; L. M. Luzhina; A. Yu. Popov; V. G. Chirskii. About the ideal economic situation - the growth of capital and the function of consumption in some models of economic growth. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 256-265. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a13/

[1] A. Daron, The Neoclassical Growth Model. Introduction to Modern Economic Growth, Princeton University Press, Princeton, 2009, 287–326

[2] Bénassy Jean-Pascal, The Ramsey Model. Macroeconomic Theory, Oxford University Press, New York, 2011, 145–160 | DOI

[3] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “The method of approximate solution of a system of differential equations from the Ramsey-Kass-Koopmans model, based on the solution in quadratures of one subclass of similar systems”, Chebyshevskii Sbornik, 23:4, September (2022), 115–125 (In Russ.) | DOI | MR | Zbl

[4] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Optimal exponent in the Ramsey —Kass —Koopmans problem with logarithmic utility function”, Chebyshevskii Sbornik, 20:4, September (2019), 197–207 (In Russ.) | DOI | MR | Zbl

[5] Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G., “On the Ramsey —Kass —Koopmans problem for consumer choice”, Results of science and technology. Modern mathematics and its applications. Thematic review, 182, September, 2020, 39–44 (In Russ.) | DOI

[6] Kozko, A. I., Luzhina, L. M., Popov, A. Yu., Chirskii, V. G., “The model of the problem Ramsey —Kass —Koopmans”, Classical and modern geometry, materials of the international conference dedicated to the 100th anniversary of V. T. Bazylev (Moscow, 2019), ed. A. V. Tsarev, Moscow state pedagogical University, M., 87–88

[7] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Assessment of the necessary initial economic resource in the Ramsey —Kass —Koopmans problem”, Chebyshevskii Sbornik, 20:4, September (2019), 188–196 (In Russ.) | DOI | MR | Zbl

[8] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “The consumption function in the Ramsey—Kass—Koopmans economic growth model in the case of a stationary saving function”, Chebyshevskii Sbornik, 23:1, September (2022), 118–129 (In Russ.) | DOI | DOI | MR | Zbl

[9] Rahul Giri, Growth Model with Endogenous Savings: Ramsey —Cass —Koopmans Model http://ciep.itam.mx/r̃ahul.giri/uploads/1/1/3/6/113608/ramsey-cass-koopmans_model.pdf

[10] Barro R.J., Sala-i-Martin X., Economic growth, 2nd ed., MIT Press, Massachusetts, 2003

[11] Groth Christian and Koch Karl-Josef and Steger Thomas Michael. Rethinking the Concept of Long-Run Economic Growth (April 2006), CESifo Working Paper Series, No 1701, 2006 https://ssrn.com/abstract=899250

[12] Groth C., Koch K.-J., Steger T. M., “When Economic Growth is Less than Exponential”, Economic Theory, 44:2 (2010) | DOI | MR | Zbl

[13] Groth C., Chapter 10: The Ramsey Model, 2010 https://web.econ.ku.dk/okocg/VV/VV-2010/Lecture

[14] Romer D., Advanced Macroeconomics, 3rd ed., McGraw-Hill/Irwin, New York, 2006, 651 pp.

[15] Robert J. Barro, “Ramsey Meets Laibson in the Neoclassical Growth Model”, The Quarterly Journal of Economics, 114:4 (1999), 1125–1152 | DOI | Zbl

[16] King Robert G., Sergio Rebelo, “Transitional Dynamics and Economic Growth in the Neoclassical Model”, American Economic Review, 83, September (1993), 908–931

[17] Pierre-Olivier Gourinchas, Notes for Econ202A: The Ramsey —Cass —Koopmans Model, UC Berkeley Fall, 2014 https://eml.berkeley.edu/w̃ebfac/gourinchas/e202a_f14/Notes_Ramsey_Cass_Koopmans_pog.pdf | Zbl

[18] Eglit Y., Eglite K., Dudin V., Yurchenko E., “Consumption function and estimation of its parameters from experimental data”, Transport business in Russia, 2022, no. 2, 7–9 | DOI