Consideration of a singular series of the asymptotic formula of Kloosterman's problem
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 228-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The representation problem of a natural number $n$ in the diagonal quadratic form with four variables $ax^2+by^2+cz^2+dt^2$, where $a$, $b$, $c$, $d$ are given positive integers, is considered in this paper. The question is posed to define under what conditions on the coefficients $a$, $b$, $c$, $d$ such representation does not exist for a given $n$. These conditions, which obtained based on the theory of congruences or without proof, are given in the Kloosterman's work (1926). Kloosterman also has obtained an asymptotic formula for the number of solutions to the equation $n=ax^2+by^2+cz^2+dt^2$. The main term of this formula is a series $\sum\limits_{q=1}^{+\infty}\Phi(q)$ of a multiplicative function $\Phi(q)$ containing the one-dimensional Gaussian sums with coefficients $a$, $b$, $c$, $d$. Our work is related to the study of the representation of this special series as a product over primes $\prod\limits_{p| q}(1+\Phi(p)+\Phi(p^2)+\cdots)$. Previously, the authors have been considered the case when $p\neq2$. Conditions for the coefficients $a$, $b$, $c$, $d$, $n$ under which the equation $n=ax^2+by^2+cz^2+dt^2$ has no solutions have been proved with using exact formulas for the one-dimensional Gaussian sums, Ramanujan sum and the generalized Ramanujan sum from the power of a prime. The case for $p=2$ and $n$ odd is considering in this paper. Taking into account formulas for the one-dimensional Gaussian sums from the power of two, the some not previously studied sums that are close to the Kloosterman sum, are appeared. For such sums from the power of two, we obtained the exact values. This allowed us to give a complete proof of the conditions on the coefficients $a$, $b$, $c$, $d$, at least two of which are even. Under these conditions an odd natural number cannot be represented by a diagonal quadratic form with four variables. Note that some of these conditions are new and are not mentioned in Kloosterman's work.
Keywords: asymptotic formula, Gaussian sum, Kloosterman sum.
@article{CHEB_2023_24_2_a11,
     author = {L. N. Kurtova and N. N. Mot'kina},
     title = {Consideration of a singular series of the asymptotic formula of {Kloosterman's} problem},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {228--247},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/}
}
TY  - JOUR
AU  - L. N. Kurtova
AU  - N. N. Mot'kina
TI  - Consideration of a singular series of the asymptotic formula of Kloosterman's problem
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 228
EP  - 247
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/
LA  - ru
ID  - CHEB_2023_24_2_a11
ER  - 
%0 Journal Article
%A L. N. Kurtova
%A N. N. Mot'kina
%T Consideration of a singular series of the asymptotic formula of Kloosterman's problem
%J Čebyševskij sbornik
%D 2023
%P 228-247
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/
%G ru
%F CHEB_2023_24_2_a11
L. N. Kurtova; N. N. Mot'kina. Consideration of a singular series of the asymptotic formula of Kloosterman's problem. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 228-247. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/

[1] Lagrange, J–L., 1736–1936. Collection of articles for the 200th anniversary of the birth, Izd. AN SSSR, M.–L., 1937, 220 pp.

[2] Lejeune Dirichlet P. G., Vorlesungen Über Zahlentheorie, F. Vieweg und sohn, Braunschweig, 1863, 416 pp. | MR

[3] Bukhshtab A.A., The theory of numbers, Prosveshchenie, M., 1966, 384 pp. | MR

[4] Gauss K. F., Works on Number Theory, Izd. AN SSSR, M., 1959, 980 pp.

[5] Dickson L. E., History of the Theory of Numbers, v. III, Carnegie Institute of Washington, Washington D.C., 1923

[6] Alaca A., Alaca S., Lemire M. F. and Williams K. S., “Nineteen quaternary quadratic forms”, Acta Arith., 130 (2007), 277–310 | DOI | MR | Zbl

[7] Alaca A., Alaca S., Lemire M. F. and Williams K. S., “Jacobi's identity and representations of integers by certain quaternary quadratic forms”, Int. J. Modern Math., 2 (2007), 143–176 | MR | Zbl

[8] Alaca A., Alaca S., Lemire M. F. and Williams K. S., “The number of representations of a positive integer by certain quaternary quadratic forms”, Int. J. Number Theory, 5 (2009), 13–40 | DOI | MR | Zbl

[9] Alaca A., “Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9”, Acta Arith., 136 (2009), 151–166 | DOI | MR | Zbl

[10] Alaca A., “Representations by quaternary quadratic forms whose coefficients are 1, 4, 9 and 36”, J. Number Theory, 131 (2011), 2192–2218 | DOI | MR | Zbl

[11] Cooper S., “On the number of representations of integers by certain quadratic forms II”, J. Combin. Number Theory, 1 (2009), 153–182 | MR | Zbl

[12] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR

[13] Malyshev, A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65, 1962, 3–212

[14] Hua Loo–Keng, Introduction to number theory, Springer, 1982, 572 pp. | MR | Zbl

[15] Estermann T., “A new application of the Hardy–Littlewood–Kloosterman method”, Proc. London Math. Soc., 12 (1962), 425–444 | DOI | MR | Zbl

[16] Estermann T., “On Kloosterman's sum”, Mathematica, 8 (1961), 83–86 | MR | Zbl

[17] Kurtova, L. N., Mot'kina, N. N., “On types of solutions of the Lagrange problem”, Itogi nauki i tekhn. Ser. Sovr. mat. i ejo pril. Temat. obz., 166, 2019, 41–48 | DOI | DOI | MR

[18] Kurtova, L. N., Mot'kina, N. N., “Consideration of a singular series of the asymptotic formula of Kloosterman's problem”, Algebra, teoriya chisel i diskretnaya matematika: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII mezhd. konf. (Tula, 2020), 224–225