Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_2_a11, author = {L. N. Kurtova and N. N. Mot'kina}, title = {Consideration of a singular series of the asymptotic formula of {Kloosterman's} problem}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {228--247}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/} }
TY - JOUR AU - L. N. Kurtova AU - N. N. Mot'kina TI - Consideration of a singular series of the asymptotic formula of Kloosterman's problem JO - Čebyševskij sbornik PY - 2023 SP - 228 EP - 247 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/ LA - ru ID - CHEB_2023_24_2_a11 ER -
L. N. Kurtova; N. N. Mot'kina. Consideration of a singular series of the asymptotic formula of Kloosterman's problem. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 228-247. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a11/
[1] Lagrange, J–L., 1736–1936. Collection of articles for the 200th anniversary of the birth, Izd. AN SSSR, M.–L., 1937, 220 pp.
[2] Lejeune Dirichlet P. G., Vorlesungen Über Zahlentheorie, F. Vieweg und sohn, Braunschweig, 1863, 416 pp. | MR
[3] Bukhshtab A.A., The theory of numbers, Prosveshchenie, M., 1966, 384 pp. | MR
[4] Gauss K. F., Works on Number Theory, Izd. AN SSSR, M., 1959, 980 pp.
[5] Dickson L. E., History of the Theory of Numbers, v. III, Carnegie Institute of Washington, Washington D.C., 1923
[6] Alaca A., Alaca S., Lemire M. F. and Williams K. S., “Nineteen quaternary quadratic forms”, Acta Arith., 130 (2007), 277–310 | DOI | MR | Zbl
[7] Alaca A., Alaca S., Lemire M. F. and Williams K. S., “Jacobi's identity and representations of integers by certain quaternary quadratic forms”, Int. J. Modern Math., 2 (2007), 143–176 | MR | Zbl
[8] Alaca A., Alaca S., Lemire M. F. and Williams K. S., “The number of representations of a positive integer by certain quaternary quadratic forms”, Int. J. Number Theory, 5 (2009), 13–40 | DOI | MR | Zbl
[9] Alaca A., “Representations by quaternary quadratic forms whose coefficients are 1, 3 and 9”, Acta Arith., 136 (2009), 151–166 | DOI | MR | Zbl
[10] Alaca A., “Representations by quaternary quadratic forms whose coefficients are 1, 4, 9 and 36”, J. Number Theory, 131 (2011), 2192–2218 | DOI | MR | Zbl
[11] Cooper S., “On the number of representations of integers by certain quadratic forms II”, J. Combin. Number Theory, 1 (2009), 153–182 | MR | Zbl
[12] Kloosterman H. D., “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR
[13] Malyshev, A. V., “On the representation of integers by positive quadratic forms”, Trudy Mat. Inst. Steklov, 65, 1962, 3–212
[14] Hua Loo–Keng, Introduction to number theory, Springer, 1982, 572 pp. | MR | Zbl
[15] Estermann T., “A new application of the Hardy–Littlewood–Kloosterman method”, Proc. London Math. Soc., 12 (1962), 425–444 | DOI | MR | Zbl
[16] Estermann T., “On Kloosterman's sum”, Mathematica, 8 (1961), 83–86 | MR | Zbl
[17] Kurtova, L. N., Mot'kina, N. N., “On types of solutions of the Lagrange problem”, Itogi nauki i tekhn. Ser. Sovr. mat. i ejo pril. Temat. obz., 166, 2019, 41–48 | DOI | DOI | MR
[18] Kurtova, L. N., Mot'kina, N. N., “Consideration of a singular series of the asymptotic formula of Kloosterman's problem”, Algebra, teoriya chisel i diskretnaya matematika: sovremennye problemy, prilozheniya i problemy istorii, Materialy XVIII mezhd. konf. (Tula, 2020), 224–225