On Bykovsky estimates for deviations of generalized parallelepipedal grids
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 214-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to obtaining estimates of the type of Bykovsky estimates for the deviation of a generalized parallelepipedal grid. It continues the studies similar to those that we previously performed to assess the quality measure and the quantitative measure of the parallelepipedal grid. The main idea used in this paper goes back to the work of V. A. Bykovsky (2002) on estimating the error of approximate integration over parallelepipedal grids and its generalization in the work of O. A. Gorkusha and N. M. Dobrovolsky (2005) for the case of a hyperbolic zeta function of an arbitrary lattice. The central place in these works is played by the Bykovsky set, consisting of local minima of the second kind, and sums over these sets. As in the work "On Bykovsky estimates for a measure of the quality of optimal coefficients  the effect was found that a multiplier with a logarithmic order of growth appears in the deviation estimates, which began to include the definition of the modified Bykovsky sum. The method of work is to combine the approaches from the work "Estimates of deviations of generalized parallelepipedal grids" (1984) with the approaches of 2005. Further ways to obtain clarification of the received estimates are outlined.
Keywords: quality function, generalized parallelepipedal grid, Bykovsky set, Bykovsky sum, local lattice minima, minimal comparison solutions.
@article{CHEB_2023_24_2_a10,
     author = {A. N. Kormacheva and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {On {Bykovsky} estimates for deviations of generalized parallelepipedal grids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {214--227},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a10/}
}
TY  - JOUR
AU  - A. N. Kormacheva
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - On Bykovsky estimates for deviations of generalized parallelepipedal grids
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 214
EP  - 227
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a10/
LA  - ru
ID  - CHEB_2023_24_2_a10
ER  - 
%0 Journal Article
%A A. N. Kormacheva
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T On Bykovsky estimates for deviations of generalized parallelepipedal grids
%J Čebyševskij sbornik
%D 2023
%P 214-227
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a10/
%G ru
%F CHEB_2023_24_2_a10
A. N. Kormacheva; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. On Bykovsky estimates for deviations of generalized parallelepipedal grids. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 214-227. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a10/

[1] Bakhvalov, N.S., “On approximate computation of multiple integrals”, Vestnik Moskovskogo universiteta, 1959, no. 4, 3–18

[2] Bykovskij, V.A., “On the error of number-theoretic quadrature formulas”, Chebyshevskij sbornik, 3:2(4) (2002), 27–33 | MR | Zbl

[3] O. A. Gorkusha, N. M. Dobrovolsky, “On estimates of hyperbolic zeta function of lattices”, Chebyshevsky Collection, 6:2(14) (2005), 130–138 | MR

[4] Dobrovol'skii, N. M., The hyperbolic Zeta function of lattices, Dep. v VINITI, No 6090–84, 1984

[5] Dobrovol'skii, N. M., Evaluation of generalized variance parallelepipedal grids, Dep. v VINITI, No 6089–84, 1984

[6] N. N. Dobrovol'skii, M. N. Dobrovol'skii, I. Yu. Rebrova, N. M. Dobrovol'skii, “The final deviation and the main quality measure for Korob ov grids”, Chebyshevskii sbornik, 23:2 (2022), 56–73 | DOI | MR | Zbl

[7] Dobrovol'skii, N. M., Esayan, A.R., Pikhtil'kov, S.A., Rodionova, O.V., Ustyan, A.E., “On a single algorithm for finding optimal coefficients”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 5:1 (1999), 51–71 | MR

[8] Dobrovol'skii, N. M., Esayan, A.R., Rebrova, I. YU., “On a recursive algorithm for lattices”, Approximation theory and harmonic analysis, proceedings of the International conference (Tula, Russia), 1998

[9] Dobrovol'skii, N. M., Esayan, A.R., Rebrova, I. Yu., “On a recursive algorithm for lattices”, Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, 5:3 (1998), 38–51 | MR

[10] Dobrovol'skii, N. M., Korobov, N. M., “On the error estimation of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskij sbornik, 3:1 (2002), 41–48 | MR | Zbl

[11] A. N. Kormacheva, N. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the hyp erb olic parameter of a two-dimensional lattice of comparisons”, Chebyshevskii sbornik, 22:4 (2021), 168–182 | MR

[12] Korobov, N.M., “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, 1959, no. 4, 19–25

[13] Korobov, N.M., “Properties and calculation of optimal coefficients”, Doklady Akademii nauk SSSR, 132:5 (1960), 1009–1012 | Zbl

[14] Korobov, N.M., Number-theoretic methods in approximate analysis, 2nd ed, MTSNMO, M., 2004

[15] Mikhlyaeva, A. V., “Approximation of quadratic algebraic lattices and nets by integer lattices and rational nets”, Chebyshevskii sbornik, 19:3 (2018), 241–256 | DOI | Zbl

[16] Mikhlyaeva, A. V., “Quality function for the approximation of quadratic algebraic nets”, Chebyshevskii sbornik, 20:1 (2019), 307–312 | Zbl

[17] Seregina N. K., “Algorithms of numerical integration with the stopping rule”, TulSU extraction. Natural sciences, 2013, no. 3, 193–201

[18] Seregina N. K., “On the quantitative measure of the quality of optimal coefficients”, Izvestiya TulSU. Natural sciences, 2015, no. 1, 22–29