On the exceptional set of a system of linear equations with prime numbers
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 15-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ — be a sufficiently large real number, $b_{1},b_{2}$-integers with $1\le{{b}_{1}},{{b}_{2}}\le X, {{a}_{ij}}$,$(i=1,2; j=\overline{1,4})$ — positive integers, $ {{p}_{ 1}}, \ldots ,{{p}_{4}}- $prime numbers. Let $ B=\max\left\{ 3\left|{{a}_{ij}}\right| \right\},$ $({{i=1,2;j=\overline{1,4}}}),$ $\bar{b}=(b_{1},b_{2}),$ $K= 9\sqrt{2}B^{3}\left|\bar{b} \right|,$ $E_{2,4}(X)= \left\{{{b}_{i}} \bigm| 1\leq b_{i}\leq X, {{b}_{i}}\ne {{a}_{i1}}{{p}_{1}}+\cdots +{{a}_{i4}}{{p}_{4}}, i=1,2\right\}.$ The paper studies the solvability of a system of linear equations $ {{ b}_{i}}= {{a}_{i1}}{{p}_{1}}+\cdots +{{a}_{i4}}{{p}_{4}}, i=1,2,$ in primes $p_{1},\ldots,p_{4}$ and for the first time a power estimate for the exceptional set $E_{2,4}(X)$ and a lower estimate for $ R(\bar b)$ — the number of solutions of the system under consideration in prime numbers, are obtained, namely, that if $X$ is sufficiently large and $ \delta (0\delta1) $ is sufficiently small real numbers, then: there exists a sufficiently large number $ A, $ such that for $ X>{{B}^ {A}} $ estimate is fair ${{E}_{2,4}}(X) {{X}^{2-\delta }};$ and for $ R(\bar b) $ given $ \bar {b}=(b_{1},b_{2}),$ $1\le b_{1},b_{2} \le X $ fair estimate $R(\bar{b})\ge {K}^{2- {\delta }}{{\left( \ln K \right)^{-4}}}, $ for all $ \bar b=(b_{1},b_{2})$ except for at most $ {X}^{2-{\delta}}$ pairs of them.
Keywords: equation, system of linear equations, prime numbers, integer coefficients, natural numbers, determinant, solvability criteria, set, cardinality of a set, estimate, power estimate, Dirichlet series, Dirichlet character, exceptional zero.
@article{CHEB_2023_24_2_a1,
     author = {I. A. Allakov and B. Kh. Abrayev},
     title = {On the exceptional set of a system of linear equations with prime numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {15--37},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a1/}
}
TY  - JOUR
AU  - I. A. Allakov
AU  - B. Kh. Abrayev
TI  - On the exceptional set of a system of linear equations with prime numbers
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 15
EP  - 37
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a1/
LA  - ru
ID  - CHEB_2023_24_2_a1
ER  - 
%0 Journal Article
%A I. A. Allakov
%A B. Kh. Abrayev
%T On the exceptional set of a system of linear equations with prime numbers
%J Čebyševskij sbornik
%D 2023
%P 15-37
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a1/
%G ru
%F CHEB_2023_24_2_a1
I. A. Allakov; B. Kh. Abrayev. On the exceptional set of a system of linear equations with prime numbers. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 15-37. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a1/

[1] Wu Fang, “On the solutions of the systems of linear equations with prime variables”, Acta Math. Sinica, 7 (1957), 102–121 | MR

[2] Ming-Chit Liu, Kai-Tsang, “On pairs of linear equations in three prime and application to Goldbach's problem”, J.Reine angew. Math., 399 (1989), 109–136 | MR | Zbl

[3] Allakov I., “On the conditions for the solvability of a system of linear difont equations in prime numbers”, Proceedings of universities. “Mathematics”, 1 (2006), 3–10 (in Russian)

[4] Allakov I., “On the conditions for the solvability of a system of linear equations in prime numbers”, Bulletin of TerSU - Tashkent, 2005, no. 2, 146–157 (in Russian)

[5] Abraev B.Kh. , Allakova D.I., “On the solution of a system of linear equations in prime numbers”, Materials of the scientific and technical conference “Applied Mathematics and Information Security” (Tashkent, 2014), 50–54 (in Russian)

[6] Abrayev B.KH., Allakov I., “On solvability conditions of a pair of linear equations with four unknowns in prime numbers”, Uzb. mat. jurnal, 2020, no. 3, 16–24 | MR

[7] Allakov I. Abrayev B.KH., “On the conditions for the solvability of a pair of linear equations in four unknowns in prime numbers”, Algebra, number theory and discrete geometry: modern problems, applications and problems of history (Tula, 2020), 6–8 (in Russian) | Zbl

[8] Davenport H., Multiplicative number theory, Third edition, Springer, New York, 2000, 177 pp. | MR | Zbl

[9] Karatsuba A.A., Fundamentals of analytic number theory, Nauka, M., 1983 (in Russian) | MR

[10] Allakov I., Estimation of trigonometric sums and their applications to the solution of some additive problems in number theory, Surkhan nashr, Termez, 2021 (in Russian)

[11] Abrayev B.Kh., “Investigation of a singular series in the problem of simultaneous representation of a pair of numbers by the sum of four prime numbers”, Scientific Bulletin. Samarkand State University, 2022, no. 1(131), 68–77 (in Russian)

[12] Vaughan R.C., The Hardy-Littlewood method, Second edition, Cambridge University Press, 1997, 232 pp. | MR | Zbl

[13] Podvigin I.V., Fundamentals of functional analysis, Novosibirsk State University, Novosibirsk, 2017 (in Russian)

[14] Babanazarov B., Tulaganov M.I., Fineleib A.S., “On the solvability of a system of linear equations in prime numbers”, Dokl. AN RUz. - Tashkent, 1992, no. 6-7, 7–9

[15] Allakov I., Israilov M.I., “On the solvability of a system of linear equations in prime numbers”, Dokl. AN RUz. - Tashkent, 1992, no. 10–11, 12–15

[16] Allakov I., Safarov A.Sh., “On one additive problem of Hua-Lo-Ken”, Chebyshevsky collection, 20:4 (2019), 32–45 (in Russian) | DOI | MR | Zbl

[17] Liu M.C., Tsang K.M., “Small prime solutions of linear equations”, Proc. Intern. Number. Th. Conf. 1987, Laval Uniyersity. Cand. Math. Soc., Berlin–New York, 1989, 595–624 | MR

[18] Allakov I.A., Israilov M.I., “About Simultaneous Representation of Two Natural Numbers by Sum of Three Primes”, Computer Algebra in Scientific Computing, CASC-2000, Springer-Verlag, Berlin–Heidelberg–New York, 2000, 13–20 | DOI | MR | Zbl

[19] Allakov I., “On the simultaneous representation of numbers as a sum of primes”, Proceedings of the international conference “Modern problems and applications of algebra, number theory and mathematical analysis” (Dushanbe, December 13-14, 2019), 2019, 46–49

[20] Allakov I. Abrayev B.KH., “On solvability conditions of a pair of linear equations with four unknowns in prime numbers”, Bulletin of the Institute of Mathematics, 5:6 (2022), 37–49 (in Russian)