Strengthening of Gaisin's lemma on the minimum modulus of even canonical products
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 127-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider entire functions that are even canonical products of zero genus, all roots of which are located on the real axis. We study the question of lower bound the minimum modulus of such functions on the circle in terms of some negative power of the maximum modulus on the same circle, when the radius of the circle runs through segments with a constant ratio of ends. In 2002 A. M. Gaisin, correcting the erroneous reasoning of M. A. Evgrafov from the book «Asymptotic estimates and entire functions», proved that for each function of the class under consideration there exists a sequence of circles, whose radii tend to infinity, the ratio of the subsequent radius to the previous one is less than $4$, and these circles are such that on each of them the minimum modulus of the function exceeds the $-20$-th power of the maximum of its modulus. This result is strengthened by us in three directions. First, the exponent $-20$ has been replaced by $-2$. Secondly, we proved that the radii of the circles on which the minimum modulus of the function exceeds the $-2$-th power maximum of its modulus occur on every interval whose end ratio is $3$. Thirdly, we found out that the discussed inequality is true for the functions of the class under study «on average». The latter means that if we take the logarithm of the product of the minimum modulus of a function on a circle and the square of its maximum modulus, divide by the cube of the radius and integrate over all radii belonging to an arbitrary segment with an end ratio of $3$, it will be a positive value.
Keywords: canonical product, minimum modulus, maximum modulus.
@article{CHEB_2023_24_1_a9,
     author = {A. Yu. Popov and V. B. Sherstyukov},
     title = {Strengthening of {Gaisin's} lemma on the minimum modulus of even canonical products},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {127--138},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/}
}
TY  - JOUR
AU  - A. Yu. Popov
AU  - V. B. Sherstyukov
TI  - Strengthening of Gaisin's lemma on the minimum modulus of even canonical products
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 127
EP  - 138
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/
LA  - ru
ID  - CHEB_2023_24_1_a9
ER  - 
%0 Journal Article
%A A. Yu. Popov
%A V. B. Sherstyukov
%T Strengthening of Gaisin's lemma on the minimum modulus of even canonical products
%J Čebyševskij sbornik
%D 2023
%P 127-138
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/
%G ru
%F CHEB_2023_24_1_a9
A. Yu. Popov; V. B. Sherstyukov. Strengthening of Gaisin's lemma on the minimum modulus of even canonical products. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/

[1] Gaisin A. M., “Solution of the Polya problem”, Sb. Math., 193:6 (2002), 825–845 | DOI | DOI | MR | Zbl

[2] Polya G., “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Mathem. Zeitschrift, 29:1 (1929), 549–640 | DOI | MR

[3] Valiron G., “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulièr”, Ann. Fac. Sci. Toulouse, 5 (1913), 117–257 | DOI | MR

[4] Wiman A., “Über eine Eigenschaft der ganzen Functionen von der Höhe Null”, Math. Ann., 76 (1915), 197–211 | DOI | MR

[5] Cartwright M. L., “On the minimum modulus of integral functions”, Proc. Cambridge Philos. Soc., 30 (1934), 412–420 | DOI | MR | Zbl

[6] Gel'fond A. O., “Linear differential equations of infinite order with constant coefficients and asymptotic periods of entire functions”, Trudy Mat. Inst. Steklov, 38, 1951, 42–67 | Zbl

[7] Hayman W. K., Subharmonic Functions, v. 2, Academic Press, London–New York, 1989, 285–875 | MR

[8] Hayman W. K., Lingham E. F., Research Problems in Function Theory (Fiftieth Anniversary Edition), Problem Books in Mathematics, Springer, 2019, viii+284 pp. | DOI | MR | Zbl

[9] Popov A. Yu., “New lower bound for the modulus of an analytic function”, Chelyabinsk Physical and Math. J., 4:2 (2019), 155–164 | MR | Zbl

[10] Popov A. Yu., “A lower estimate for the minimum modulus of an analytic function on a circle in terms of the negative power of its norm on a larger circle”, Proc. Steklov Inst. Math., 2022 (forthcoming paper) | DOI | MR | Zbl

[11] Popov A. Yu. and Sherstyukov V. B., “Lower bound for minimun of modulus of entire function of genus zero with positive roots in terms of degree of maximal modulus at frequent sequence of points”, Ufa Math. J., 14:3 (2022), 76–95 | DOI | MR

[12] Evgrafov M. A., Asymptotic estimates and entire functions, Nauka, M., 1979, 320 pp. | MR

[13] Hayman W. K., “The minimum modulus of large integral functions”, Proc. London Math. Soc., 2:3 (1952), 469–512 | DOI | MR | Zbl

[14] Levin B. Ja., Distribution of zeros of entire functions, v. VII, Amer. Math. Soc., Providence, R.I., 1964, 493 pp. | MR | Zbl

[15] Leont'ev A. F., Exponential series, Nauka, M., 1976, 536 pp. | MR