Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a9, author = {A. Yu. Popov and V. B. Sherstyukov}, title = {Strengthening of {Gaisin's} lemma on the minimum modulus of even canonical products}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {127--138}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/} }
TY - JOUR AU - A. Yu. Popov AU - V. B. Sherstyukov TI - Strengthening of Gaisin's lemma on the minimum modulus of even canonical products JO - Čebyševskij sbornik PY - 2023 SP - 127 EP - 138 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/ LA - ru ID - CHEB_2023_24_1_a9 ER -
A. Yu. Popov; V. B. Sherstyukov. Strengthening of Gaisin's lemma on the minimum modulus of even canonical products. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 127-138. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a9/
[1] Gaisin A. M., “Solution of the Polya problem”, Sb. Math., 193:6 (2002), 825–845 | DOI | DOI | MR | Zbl
[2] Polya G., “Untersuchungen über Lücken und Singularitäten von Potenzreihen”, Mathem. Zeitschrift, 29:1 (1929), 549–640 | DOI | MR
[3] Valiron G., “Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulièr”, Ann. Fac. Sci. Toulouse, 5 (1913), 117–257 | DOI | MR
[4] Wiman A., “Über eine Eigenschaft der ganzen Functionen von der Höhe Null”, Math. Ann., 76 (1915), 197–211 | DOI | MR
[5] Cartwright M. L., “On the minimum modulus of integral functions”, Proc. Cambridge Philos. Soc., 30 (1934), 412–420 | DOI | MR | Zbl
[6] Gel'fond A. O., “Linear differential equations of infinite order with constant coefficients and asymptotic periods of entire functions”, Trudy Mat. Inst. Steklov, 38, 1951, 42–67 | Zbl
[7] Hayman W. K., Subharmonic Functions, v. 2, Academic Press, London–New York, 1989, 285–875 | MR
[8] Hayman W. K., Lingham E. F., Research Problems in Function Theory (Fiftieth Anniversary Edition), Problem Books in Mathematics, Springer, 2019, viii+284 pp. | DOI | MR | Zbl
[9] Popov A. Yu., “New lower bound for the modulus of an analytic function”, Chelyabinsk Physical and Math. J., 4:2 (2019), 155–164 | MR | Zbl
[10] Popov A. Yu., “A lower estimate for the minimum modulus of an analytic function on a circle in terms of the negative power of its norm on a larger circle”, Proc. Steklov Inst. Math., 2022 (forthcoming paper) | DOI | MR | Zbl
[11] Popov A. Yu. and Sherstyukov V. B., “Lower bound for minimun of modulus of entire function of genus zero with positive roots in terms of degree of maximal modulus at frequent sequence of points”, Ufa Math. J., 14:3 (2022), 76–95 | DOI | MR
[12] Evgrafov M. A., Asymptotic estimates and entire functions, Nauka, M., 1979, 320 pp. | MR
[13] Hayman W. K., “The minimum modulus of large integral functions”, Proc. London Math. Soc., 2:3 (1952), 469–512 | DOI | MR | Zbl
[14] Levin B. Ja., Distribution of zeros of entire functions, v. VII, Amer. Math. Soc., Providence, R.I., 1964, 493 pp. | MR | Zbl
[15] Leont'ev A. F., Exponential series, Nauka, M., 1976, 536 pp. | MR