Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a8, author = {V. I. Panzhenskii and A. O. Rastrepina}, title = {The left-invariant {Sasakian} structure on the group model of the real extension of the {Lobachevsky} plane}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {114--126}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/} }
TY - JOUR AU - V. I. Panzhenskii AU - A. O. Rastrepina TI - The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane JO - Čebyševskij sbornik PY - 2023 SP - 114 EP - 126 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/ LA - ru ID - CHEB_2023_24_1_a8 ER -
%0 Journal Article %A V. I. Panzhenskii %A A. O. Rastrepina %T The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane %J Čebyševskij sbornik %D 2023 %P 114-126 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/ %G ru %F CHEB_2023_24_1_a8
V. I. Panzhenskii; A. O. Rastrepina. The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 114-126. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/
[1] Galaev S. V., “Almost contact metric spaces with $N$-connection”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mexanika. Informatika (Izvestiya of Saratov university. Mathematics. Mechanics. Informatics), 15:3 (2015), 258–264 | DOI | Zbl
[2] Galaev S. V., “$\nabla_N$-Einstein almost contact metric manifolds”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2021, no. 70, 5–15 | DOI | Zbl
[3] Banaru M. B., “On almost contact metric 1-hypersurfaces in Kahlerian manifolds”, Siberian Mathematical Journal, 55:4 (2014), 585–588 | DOI | MR | Zbl
[4] Banaru M. B., “The almost contact metric hypersurfaces with small type numbers in $W_4$-manifolds”, Moscow University Mathematics Bulletin, 73:1 (2018), 38–40 | DOI | MR | Zbl
[5] Smolentsev N. K., “Left-invariant para-sasakian structures on Lie groups”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2019, no. 62, 27–37 | DOI | Zbl
[6] Smolentsev N. K., Shagabudinova I. Y., “On Parasasakian structures on five-dimensional Lie algebras”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2021, no. 69, 37–52 | DOI | Zbl
[7] Pan'zhenskii V. I., Rastrepina A. O., “The left-invariant contact metric structure on the Sol manifold”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 162:1 (2020), 77–90 | DOI | MR
[8] Pan'zhenskii V. I., Rastrepina A. O., “Contact and almost contact structures on the real extension of the Lobachevsky plane”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 163:3-4 (2021), 291–303 | DOI
[9] Pan'zhenskii V. I., Rastrepina A. O., “Left-invariant para-sasakian structure on the Heisenberg group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2022, no. 75, 38–51 | DOI | Zbl
[10] Calvaruso G., “Three-dimensional homogeneous almost contact metric structures”, J. Geom. Phys., 69 (2013), 60–73 | DOI | MR | Zbl
[11] Calvaruso G., Martín-Molina V., “Paracontact metric structures on the unit tangent sphere bundle”, Annali di Matematica Pura ed Applicata (1923-), 194 (2015), 1359–1380 | DOI | MR | Zbl
[12] Calvaruso G., Perrone A., “Left-invariant hypercontact structures on three-dimensional Lie groups”, Periodica Mathematica Hungarica, 69 (2014), 97–108 | DOI | MR | Zbl
[13] Calvaruso G., Perrone A., “Five-dimensional paracontact Lie algebras”, Diff. Geom. and its Appl., 45 (2016), 115–129 | DOI | MR | Zbl
[14] Diatta A., “Left invariant contact structures on Lie groups”, Diff. Geom. and its Appl., 26:5 (2008), 544–552 | DOI | MR | Zbl
[15] Slavolyubova Ya. V., “Contact metric structures on odd-dimensional unit spheres”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2014, no. 6(32), 46–54
[16] Panzhenskii V. I., Klimova T. R., “The contact metric connection on the Heisenberg group”, Russian Mathematics, 62:11 (2018), 45–52 | DOI | MR | Zbl
[17] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin–Heidelberg–New York, 1976, 148 pp. | DOI | MR | Zbl
[18] Tanno S., “The automorphism groups of almost contact riemannian manifolds”, Tohoku Math. J., 21:1 (1969), 21–38 | DOI | MR | Zbl
[19] Vershik A. M., Faddeev L. D., “Lagrangian mechanics in invariant form”, Problemy teoreticheskoy fiziki, Izd. LGU, L., 1975, 129–141
[20] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Dinamicheskie sistemy - 7, Itogi nauki i texniki. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, 1987, 5–85 | Zbl
[21] Gromoll D., Klingenberg W., Meyer W., Riemannian geometry as a whole, Mir, M., 1971, 343 pp.