The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 114-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

It has been proved that there is left-invariant contact metric structure $(\eta,\xi,\varphi, g)$ whose Riemannian metric is different from the metric of the direct product on the group model of the real extension of the Lobachevsky plane $\mathbb{H}^2\times\mathbb{R}$. The restriction of the metric $g$ to the contact distribution is the metric of the Lobachevsky plane and, together with a completely nonholonomic contact distribution, defines a sub-Riemann structure on $\mathbb{H}^2\times\mathbb{R}$. The found almost contact metric structure is normal and therefore Sasakian. The lie group of automorphisms of this structure has maximum dimension. The basis vector fields of its Lie algebra are found. In addition to the Levi-Civita connection $\nabla$, we consider a contact metric connection $\tilde{\nabla}$ with skew-symmetric torsion, which, like the Levi-Civita connection, is also invariant under the automorphism group. The structure tensors $\eta,\xi,\varphi, g$, the torsion tensor $\tilde{S}$ and the curvature tensor $\tilde{R}$ of a given connection are covariantly constant. The curvature tensor $\tilde{R}$ of the connection $\tilde{\nabla}$ has the necessary properties to introduce the concept of sectional curvature. It is established that the sectional curvature $\tilde{k}$ belongs to the numerical segment $[-2,0]$. Using the field of orthonormal frames adapted to the contact distribution, the coefficients of the truncated connection and the differential equations of its geodesics are found. It has been proved that the contact geodesics of the connections $\nabla$ and $\tilde{\nabla}$ coincide with the geodesics of truncated connection, that is, both connections are compatible with the contact distribution. This means that there is only one contact geodesic through each point in each contact direction.
Keywords: left-invariant Sasakian structure, contact metric connection, contact geodesics, sectional curvature.
@article{CHEB_2023_24_1_a8,
     author = {V. I. Panzhenskii and A. O. Rastrepina},
     title = {The left-invariant {Sasakian} structure on the group model of the real extension of the {Lobachevsky} plane},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {114--126},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/}
}
TY  - JOUR
AU  - V. I. Panzhenskii
AU  - A. O. Rastrepina
TI  - The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 114
EP  - 126
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/
LA  - ru
ID  - CHEB_2023_24_1_a8
ER  - 
%0 Journal Article
%A V. I. Panzhenskii
%A A. O. Rastrepina
%T The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane
%J Čebyševskij sbornik
%D 2023
%P 114-126
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/
%G ru
%F CHEB_2023_24_1_a8
V. I. Panzhenskii; A. O. Rastrepina. The left-invariant Sasakian structure on the group model of the real extension of the Lobachevsky plane. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 114-126. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a8/

[1] Galaev S. V., “Almost contact metric spaces with $N$-connection”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mexanika. Informatika (Izvestiya of Saratov university. Mathematics. Mechanics. Informatics), 15:3 (2015), 258–264 | DOI | Zbl

[2] Galaev S. V., “$\nabla_N$-Einstein almost contact metric manifolds”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2021, no. 70, 5–15 | DOI | Zbl

[3] Banaru M. B., “On almost contact metric 1-hypersurfaces in Kahlerian manifolds”, Siberian Mathematical Journal, 55:4 (2014), 585–588 | DOI | MR | Zbl

[4] Banaru M. B., “The almost contact metric hypersurfaces with small type numbers in $W_4$-manifolds”, Moscow University Mathematics Bulletin, 73:1 (2018), 38–40 | DOI | MR | Zbl

[5] Smolentsev N. K., “Left-invariant para-sasakian structures on Lie groups”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2019, no. 62, 27–37 | DOI | Zbl

[6] Smolentsev N. K., Shagabudinova I. Y., “On Parasasakian structures on five-dimensional Lie algebras”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2021, no. 69, 37–52 | DOI | Zbl

[7] Pan'zhenskii V. I., Rastrepina A. O., “The left-invariant contact metric structure on the Sol manifold”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 162:1 (2020), 77–90 | DOI | MR

[8] Pan'zhenskii V. I., Rastrepina A. O., “Contact and almost contact structures on the real extension of the Lobachevsky plane”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 163:3-4 (2021), 291–303 | DOI

[9] Pan'zhenskii V. I., Rastrepina A. O., “Left-invariant para-sasakian structure on the Heisenberg group”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2022, no. 75, 38–51 | DOI | Zbl

[10] Calvaruso G., “Three-dimensional homogeneous almost contact metric structures”, J. Geom. Phys., 69 (2013), 60–73 | DOI | MR | Zbl

[11] Calvaruso G., Martín-Molina V., “Paracontact metric structures on the unit tangent sphere bundle”, Annali di Matematica Pura ed Applicata (1923-), 194 (2015), 1359–1380 | DOI | MR | Zbl

[12] Calvaruso G., Perrone A., “Left-invariant hypercontact structures on three-dimensional Lie groups”, Periodica Mathematica Hungarica, 69 (2014), 97–108 | DOI | MR | Zbl

[13] Calvaruso G., Perrone A., “Five-dimensional paracontact Lie algebras”, Diff. Geom. and its Appl., 45 (2016), 115–129 | DOI | MR | Zbl

[14] Diatta A., “Left invariant contact structures on Lie groups”, Diff. Geom. and its Appl., 26:5 (2008), 544–552 | DOI | MR | Zbl

[15] Slavolyubova Ya. V., “Contact metric structures on odd-dimensional unit spheres”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mexanika (Tomsk State University Journal of Mathematics and Mechanics), 2014, no. 6(32), 46–54

[16] Panzhenskii V. I., Klimova T. R., “The contact metric connection on the Heisenberg group”, Russian Mathematics, 62:11 (2018), 45–52 | DOI | MR | Zbl

[17] Blair D. E., Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin–Heidelberg–New York, 1976, 148 pp. | DOI | MR | Zbl

[18] Tanno S., “The automorphism groups of almost contact riemannian manifolds”, Tohoku Math. J., 21:1 (1969), 21–38 | DOI | MR | Zbl

[19] Vershik A. M., Faddeev L. D., “Lagrangian mechanics in invariant form”, Problemy teoreticheskoy fiziki, Izd. LGU, L., 1975, 129–141

[20] Vershik A. M., Gershkovich V. Ya., “Nonholonomic dynamical systems. Geometry of distributions and variational problems”, Dinamicheskie sistemy - 7, Itogi nauki i texniki. Seriya Sovremennye problemy matematiki. Fundamentalnye napravleniya, 16, 1987, 5–85 | Zbl

[21] Gromoll D., Klingenberg W., Meyer W., Riemannian geometry as a whole, Mir, M., 1971, 343 pp.