Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a5, author = {V. A. Kibkalo}, title = {First {Appelrot} class of {pseudo-Euclidean} {Kovalevskaya} system}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {69--88}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a5/} }
V. A. Kibkalo. First Appelrot class of pseudo-Euclidean Kovalevskaya system. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 69-88. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a5/
[1] Borisov A. V., Mamaev I. S., Classical dynamics in non-Euclidean spaces, R.Ch.D., M.–Izhevsk, 2004 (in Russian)
[2] Borisov A. V., Mamaev I. S., “Rigid body dynamics in non-Euclidean spaces”, Rus. J. of Math. Phys., 23:4 (2016), 431–454 | DOI | MR | Zbl
[3] Kowalewski S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Mathematica, 12 (1889), 177–232 | DOI | MR
[4] Sokolov S.V̇., “The integrable case of Kovalevskaya in a non-Euclidean spase: separation of variables”, Trydi MAI, 100 (2018), 1–13
[5] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, Izd-vo AN SSSR, M.-L., 1940, 61–157
[6] Delaunay N. B., “Zur Frage von der geometrischen Deutung der Integrale von S. Kowalevski bei der Bewegung eines starren K$\ddot{o}$rpers um einen festen Punkte”, Sb. Math., 16:2 (1892), 346–351
[7] Smale S., “Topology and Mechanics: 1”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR | Zbl
[8] Kharlamov M. P., Topological analysis of integrable problems of rigid body dynamics, LSU Publ., L., 1988, 200 pp. | MR
[9] Fomenko A. T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl
[10] Fomenko A. T., Zieschang H., “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl
[11] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl
[12] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems: geometry, topology, classification, Chapman Hall/CRC, Boca Raton–London–N.Y.–Washington, 2004 | MR | Zbl
[13] Oshemkov A. A., “Fomenko invariants for the main integrable cases of rigid body motion equations”, Adv. in Sov. Math., 4 (1991), 67–146 | MR
[14] Bolsinov A. T., Richter P., Fomenko A. T., “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl
[15] Morozov P. V., “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | MR | Zbl
[16] Morozov P. V., “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | MR | Zbl
[17] Logacheva N. S., “Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia integrable system”, Sb. Math., 203:1 (2012), 28–59 | DOI | MR | Zbl
[18] Maslov V. P., Shafarevich A. I., “Fomenko invariants in the asymptotic theory of the Navier-Stokes equations”, J. Math. Sci., 225:4 (2017), 666–680 | DOI | MR | Zbl
[19] Ramodanov S. M., Sokolov S. V., “Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691 | DOI | MR | Zbl
[20] Palshin G. P., “On noncompact bifurcation in one generalized model of vortex dynamics”, Theor. Math. Phys., 212:1 (2022), 972–983 | DOI | MR | Zbl
[21] Haghighatdoost G., Oshemkov A. A., “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)”, Sb. Math., 200:6 (2009), 899–921 | DOI | MR | Zbl
[22] Novikov D. V., “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Sb. Math., 205:8 (2014), 1107–1132 | DOI | DOI | MR | Zbl
[23] Komarov I. V., “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., 47:1 (1981), 320–324 | DOI | MR
[24] Kozlov I. K., “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572 | DOI | MR | Zbl
[25] Kibkalo V. A., “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Lobachevskii J. Math., 39:9 (2018), 1396–1399 | DOI | MR | Zbl
[26] Kibkalo V. A., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 210:5 (2019), 625–662 | DOI | MR | Zbl
[27] Kibkalo V. A., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(3, 1)”, Topol. and Appl., 275 (2020), 107028 | DOI | MR | Zbl
[28] Fedoseev D. A., Fomenko A. T., “Noncompact Bifurcations of Integrable Dynamic Systems”, J. Math. Sc., 248 (2020), 810–827 | DOI | MR | Zbl
[29] Kudryavtseva E. A., “An analogue of the Liouville theorem for integrable Hamiltonian systems with incomplete flows”, Doklady Mathematics, 86:1 (2012), 527–529 | DOI | MR | MR | Zbl
[30] Novikov D. V., “Topological features of the Sokolov integrable case on the Lie algebra e(3)”, Sb. Math., 202:5 (2011), 749–781 | DOI | DOI | MR | Zbl
[31] Nikolaenko S. S., “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Sb. Math., 211:8 (2020), 1127–1158 | DOI | DOI | MR | Zbl
[32] Nikolaenko S. S., “Topological classification of non-compact 3-atoms with a circle action”, Chebyshevskii Sb., 22:5 (2021), 185–197 | DOI | MR | Zbl
[33] Nikolaenko S. S., “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38 (2017), 1050–1060 | DOI | MR | Zbl
[34] Vedyushkina (Fokicheva) V. V., Fomenko A. T., “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl
[35] Vedyushkina V. V., Skvortsov A. I., “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 77:1 (2022), 8–19 | MR | Zbl
[36] Kibkalo V. A., “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., 75:6 (2020), 263–267 | DOI | MR | Zbl
[37] Kharlamov M. P., “Topological analysis and Boolean functions. I. Methods and application to classical systems”, Nelin. Dinam., 6:4 (2010), 769–805