First Appelrot class of pseudo-Euclidean Kovalevskaya system
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 69-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper, properties of an integrable pseudo-Euclidean analogue of the Kovalevskaya top are studied for the zero level of the additional first Kovalevskaya integral. The class of motions of a classical top under the same condition is also called the first Appelrot class or the Delaunay class. We describe the homeomorphism class of each fiber, the fiberwise homeomorphism classes of the foliation in a neighborhood of each bifurcation fiber (i.e. analogues of Fomenko 2-atoms) and on the two-dimensional intersection of the level $K = 0$ and each nondegenerate symplectic leaf of the Poisson bracket. It is proved that non-compact one-dimensional Liouville fibers, non-critical bifurcations of compact and non-compact fibers appear in this integrable system. The non-degeneracy problem (in the Bott sense) for all points of the $K = 0$ level is also studied, and it is proved that the critical sets of the of classical Kovalevskaya top and its pseudo-Euclidean analogue coincides.
Keywords: Hamiltonian system, integrability, rigid body dynamics, Liouville foliation, pseudo-Euclidean space, bifurcation diagram, singularity, topological invariant.
@article{CHEB_2023_24_1_a5,
     author = {V. A. Kibkalo},
     title = {First {Appelrot} class of {pseudo-Euclidean} {Kovalevskaya} system},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {69--88},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a5/}
}
TY  - JOUR
AU  - V. A. Kibkalo
TI  - First Appelrot class of pseudo-Euclidean Kovalevskaya system
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 69
EP  - 88
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a5/
LA  - ru
ID  - CHEB_2023_24_1_a5
ER  - 
%0 Journal Article
%A V. A. Kibkalo
%T First Appelrot class of pseudo-Euclidean Kovalevskaya system
%J Čebyševskij sbornik
%D 2023
%P 69-88
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a5/
%G ru
%F CHEB_2023_24_1_a5
V. A. Kibkalo. First Appelrot class of pseudo-Euclidean Kovalevskaya system. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 69-88. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a5/

[1] Borisov A. V., Mamaev I. S., Classical dynamics in non-Euclidean spaces, R.Ch.D., M.–Izhevsk, 2004 (in Russian)

[2] Borisov A. V., Mamaev I. S., “Rigid body dynamics in non-Euclidean spaces”, Rus. J. of Math. Phys., 23:4 (2016), 431–454 | DOI | MR | Zbl

[3] Kowalewski S., “Sur le probléme de la rotation d'un corps solide autour d'un point fixe”, Acta Mathematica, 12 (1889), 177–232 | DOI | MR

[4] Sokolov S.V̇., “The integrable case of Kovalevskaya in a non-Euclidean spase: separation of variables”, Trydi MAI, 100 (2018), 1–13

[5] Appelrot G. G., “Ne vpolne simmetrichnye tyazhelye giroskopy”, Dvizhenie tverdogo tela vokrug nepodvizhnoi tochki, Izd-vo AN SSSR, M.-L., 1940, 61–157

[6] Delaunay N. B., “Zur Frage von der geometrischen Deutung der Integrale von S. Kowalevski bei der Bewegung eines starren K$\ddot{o}$rpers um einen festen Punkte”, Sb. Math., 16:2 (1892), 346–351

[7] Smale S., “Topology and Mechanics: 1”, Invent. Math., 10:4 (1970), 305–331 | DOI | MR | Zbl

[8] Kharlamov M. P., Topological analysis of integrable problems of rigid body dynamics, LSU Publ., L., 1988, 200 pp. | MR

[9] Fomenko A. T., “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl | Zbl

[10] Fomenko A. T., Zieschang H., “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl | Zbl

[11] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topological classification of integrable Hamiltonian systems with two degrees of freedom. List of systems of small complexity”, Russian Math. Surveys, 45:2 (1990), 59–94 | DOI | MR | Zbl

[12] Bolsinov A. V., Fomenko A. T., Integrable Hamiltonian systems: geometry, topology, classification, Chapman Hall/CRC, Boca Raton–London–N.Y.–Washington, 2004 | MR | Zbl

[13] Oshemkov A. A., “Fomenko invariants for the main integrable cases of rigid body motion equations”, Adv. in Sov. Math., 4 (1991), 67–146 | MR

[14] Bolsinov A. T., Richter P., Fomenko A. T., “The method of loop molecules and the topology of the Kovalevskaya top”, Sb. Math., 191:2 (2000), 151–188 | DOI | MR | Zbl

[15] Morozov P. V., “The Liouville classification of integrable systems of the Clebsch case”, Sb. Math., 193:10 (2002), 1507–1533 | DOI | MR | Zbl

[16] Morozov P. V., “Topology of Liouville foliations in the Steklov and the Sokolov integrable cases of Kirchhoff's equations”, Sb. Math., 195:3 (2004), 369–412 | DOI | MR | Zbl

[17] Logacheva N. S., “Classification of nondegenerate equilibria and degenerate 1-dimensional orbits of the Kovalevskaya-Yehia integrable system”, Sb. Math., 203:1 (2012), 28–59 | DOI | MR | Zbl

[18] Maslov V. P., Shafarevich A. I., “Fomenko invariants in the asymptotic theory of the Navier-Stokes equations”, J. Math. Sci., 225:4 (2017), 666–680 | DOI | MR | Zbl

[19] Ramodanov S. M., Sokolov S. V., “Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691 | DOI | MR | Zbl

[20] Palshin G. P., “On noncompact bifurcation in one generalized model of vortex dynamics”, Theor. Math. Phys., 212:1 (2022), 972–983 | DOI | MR | Zbl

[21] Haghighatdoost G., Oshemkov A. A., “The topology of Liouville foliation for the Sokolov integrable case on the Lie algebra so(4)”, Sb. Math., 200:6 (2009), 899–921 | DOI | MR | Zbl

[22] Novikov D. V., “Topological features of the Sokolov integrable case on the Lie algebra $\mathrm{so}(3,1)$”, Sb. Math., 205:8 (2014), 1107–1132 | DOI | DOI | MR | Zbl

[23] Komarov I. V., “Kowalewski basis for the hydrogen atom”, Theoret. and Math. Phys., 47:1 (1981), 320–324 | DOI | MR

[24] Kozlov I. K., “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572 | DOI | MR | Zbl

[25] Kibkalo V. A., “Topological analysis of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Lobachevskii J. Math., 39:9 (2018), 1396–1399 | DOI | MR | Zbl

[26] Kibkalo V. A., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 210:5 (2019), 625–662 | DOI | MR | Zbl

[27] Kibkalo V. A., “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra so(3, 1)”, Topol. and Appl., 275 (2020), 107028 | DOI | MR | Zbl

[28] Fedoseev D. A., Fomenko A. T., “Noncompact Bifurcations of Integrable Dynamic Systems”, J. Math. Sc., 248 (2020), 810–827 | DOI | MR | Zbl

[29] Kudryavtseva E. A., “An analogue of the Liouville theorem for integrable Hamiltonian systems with incomplete flows”, Doklady Mathematics, 86:1 (2012), 527–529 | DOI | MR | MR | Zbl

[30] Novikov D. V., “Topological features of the Sokolov integrable case on the Lie algebra e(3)”, Sb. Math., 202:5 (2011), 749–781 | DOI | DOI | MR | Zbl

[31] Nikolaenko S. S., “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Sb. Math., 211:8 (2020), 1127–1158 | DOI | DOI | MR | Zbl

[32] Nikolaenko S. S., “Topological classification of non-compact 3-atoms with a circle action”, Chebyshevskii Sb., 22:5 (2021), 185–197 | DOI | MR | Zbl

[33] Nikolaenko S. S., “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38 (2017), 1050–1060 | DOI | MR | Zbl

[34] Vedyushkina (Fokicheva) V. V., Fomenko A. T., “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | DOI | MR | Zbl

[35] Vedyushkina V. V., Skvortsov A. I., “Topology of integrable billiard in an ellipse on the Minkowski plane with the Hooke potential”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 77:1 (2022), 8–19 | MR | Zbl

[36] Kibkalo V. A., “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., 75:6 (2020), 263–267 | DOI | MR | Zbl

[37] Kharlamov M. P., “Topological analysis and Boolean functions. I. Methods and application to classical systems”, Nelin. Dinam., 6:4 (2010), 769–805