Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 50-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the proposed work we construct a regularized asymptotics for the solution of a singularly perturbed inhomogeneous mixed problem on the half-axis arising from a semiclassical transition in the Schrodinger equation in the coordinate representation. The potential energy profile chosen in the paper leads to a singularity in the spectrum of the limit operator in the form strong the turning point. Based on the ideas of asymptotic integration of problems with an unstable spectrum by S.A. Lomov and A.G. Eliseev, it is indicated how and from what considerations regularizing functions and additional regularizing operators should be introduced, the formalism of the regularization method for the problem posed is described in detail, and justification of this algorithm and an asymptotic solution of any order with respect to a small parameter is constructed.
Keywords: singularly perturbed problem, asymptotic solution, regularization method, turning point.
@article{CHEB_2023_24_1_a4,
     author = {A. G. Eliseev and P. V. Kirichenko},
     title = {Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of {Schrodinger} type in the presence of a strong turning point for the limit operator},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {50--68},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/}
}
TY  - JOUR
AU  - A. G. Eliseev
AU  - P. V. Kirichenko
TI  - Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 50
EP  - 68
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/
LA  - ru
ID  - CHEB_2023_24_1_a4
ER  - 
%0 Journal Article
%A A. G. Eliseev
%A P. V. Kirichenko
%T Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator
%J Čebyševskij sbornik
%D 2023
%P 50-68
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/
%G ru
%F CHEB_2023_24_1_a4
A. G. Eliseev; P. V. Kirichenko. Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 50-68. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/

[1] Bobodzhanov A. A., Safonov V. F., Course of higher mathematics. Singularly perturbed equations and the regularization method, a study guide, National Research University MPEI, M., 2012 (In Russ.)

[2] Lomov S. A., Lomov I. S., Fundamentals of the mathematical theory of the boundary layer, Moscow State University, M., 2011 (In Russ.)

[3] Lomov S. A., Introduction to the General Theory of Singular Perturbations, Translations of Mathematical Monographs, Amer. Math. Soc., New York, 1992

[4] Lomov S. A., “Asymptotic behavior of solutions to second-order ordinary differential equations containing a small parameter”, Trudi MPEI, 42, M., 1962, 99–144 (In Russ.) | MR

[5] Lomov S. A., “Power series boundary layer in problems involving a small parameter”, Sov. Math. Dokl., 1963, no. 4, 125–129 | MR | Zbl

[6] Lomov S. A., “On the Lighthill Model Equation”, Sb. nauch. trudov MO SSSR, 1964, no. 54, 74–83 (In Russ.)

[7] Lomov S. A., “Regularization of singular perturbations”, Dokl. nauchno-tekhn. konf. MPEI, sektsiya matem., M., 1965, 129–133 (In Russ.)

[8] Lomov S. A., Safonov V. F., “Regularizations and asymptotic solutions for singularly perturbed problems with point singularities of the spectrum of the limit operator" [Regulyarizatsii i asimptoticheskiye resheniya dlya singulyarno vozmushchennykh zadach s tochechnymi osobennostyami spektra predel'nogo operatora”, Ukr. mat. zhurn., 36:2 (1984), 172–180 (In Russ.) | MR | Zbl

[9] Eliseev A. G., Lomov S. A., “The theory of singular perturbations in the case of spectral singularities of a limit operator”, Math. USSR-Sb., 59:2 (1988), 541–555 | DOI | MR | Zbl | Zbl

[10] Bobodzhanov A. A., Safonov V. F., “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufa Math. J., 10:2 (2018), 3–13 | DOI | MR | Zbl

[11] Eliseev A. G., Ratnikova T. A., “Singularly perturbed cauchy problem in the presence of the rational simple pivot point of the limit operator”, Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 3, 63–73 | Zbl

[12] Eliseev A. G., “Regularized solution of a singularly perturbed cauchy problem in the presence of irrational simple turning point”, Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 2, 15–32 | Zbl

[13] Eliseev P. V., “A singularly perturbed cauchy problem for a parabolic equation in the presence of the “weak” turning point of the limit operator”, Mathematical Notes of NEFU, 57:3 (2020), 3–15

[14] Eliseev A. G., Eliseev P. V., “Regularized asymptotics of solution a singularly perturbed Cauchy problem in the presence of the «weak» turning point at the limit operator”, Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 1, 55–67 | Zbl

[15] Eliseev A. G., Eliseev P. V., “Singularly Perturbed Cauchy Problem in Which the Limit Operator has Multiple Spectrum and a Weak First-Order Turning Point”, Differential Equations, 58:6 (2022), 727–740 | DOI | MR | Zbl

[16] Eliseev A. G., “Example of Solution of a Singularly Perturbed Cauchy Problem for a Parabolic Eqiuation in the Presence of strong Turning Point”, Differencialnie Uravnenia i Protsesy Upravlenia, 2022, no. 3, 46–58 | Zbl

[17] Landau L. D., Lifshitz E. M., Course of theoretical physics, v. 3, Quantum mechanics (non-relativistic theory), 2008

[18] Arnol'd V. I., “On matrices depending on parameters”, Russian Math. Surveys, 26:2 (1971), 29–43 | DOI | MR

[19] Liouville J., “Second Mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramétre variable”, Journal de Mathématiques Pures et Appliquées, 1837, 16–35

[20] Elsgolts L. E., Differentsial'nyye uravneniya i variatsionnoye ischisleniye, Nauka, M., 1969 (In Russ.)