Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a4, author = {A. G. Eliseev and P. V. Kirichenko}, title = {Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of {Schrodinger} type in the presence of a strong turning point for the limit operator}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {50--68}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/} }
TY - JOUR AU - A. G. Eliseev AU - P. V. Kirichenko TI - Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator JO - Čebyševskij sbornik PY - 2023 SP - 50 EP - 68 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/ LA - ru ID - CHEB_2023_24_1_a4 ER -
%0 Journal Article %A A. G. Eliseev %A P. V. Kirichenko %T Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator %J Čebyševskij sbornik %D 2023 %P 50-68 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/ %G ru %F CHEB_2023_24_1_a4
A. G. Eliseev; P. V. Kirichenko. Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 50-68. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/
[1] Bobodzhanov A. A., Safonov V. F., Course of higher mathematics. Singularly perturbed equations and the regularization method, a study guide, National Research University MPEI, M., 2012 (In Russ.)
[2] Lomov S. A., Lomov I. S., Fundamentals of the mathematical theory of the boundary layer, Moscow State University, M., 2011 (In Russ.)
[3] Lomov S. A., Introduction to the General Theory of Singular Perturbations, Translations of Mathematical Monographs, Amer. Math. Soc., New York, 1992
[4] Lomov S. A., “Asymptotic behavior of solutions to second-order ordinary differential equations containing a small parameter”, Trudi MPEI, 42, M., 1962, 99–144 (In Russ.) | MR
[5] Lomov S. A., “Power series boundary layer in problems involving a small parameter”, Sov. Math. Dokl., 1963, no. 4, 125–129 | MR | Zbl
[6] Lomov S. A., “On the Lighthill Model Equation”, Sb. nauch. trudov MO SSSR, 1964, no. 54, 74–83 (In Russ.)
[7] Lomov S. A., “Regularization of singular perturbations”, Dokl. nauchno-tekhn. konf. MPEI, sektsiya matem., M., 1965, 129–133 (In Russ.)
[8] Lomov S. A., Safonov V. F., “Regularizations and asymptotic solutions for singularly perturbed problems with point singularities of the spectrum of the limit operator" [Regulyarizatsii i asimptoticheskiye resheniya dlya singulyarno vozmushchennykh zadach s tochechnymi osobennostyami spektra predel'nogo operatora”, Ukr. mat. zhurn., 36:2 (1984), 172–180 (In Russ.) | MR | Zbl
[9] Eliseev A. G., Lomov S. A., “The theory of singular perturbations in the case of spectral singularities of a limit operator”, Math. USSR-Sb., 59:2 (1988), 541–555 | DOI | MR | Zbl | Zbl
[10] Bobodzhanov A. A., Safonov V. F., “Regularized asymptotics of solutions to integro-differential partial differential equations with rapidly varying kernels”, Ufa Math. J., 10:2 (2018), 3–13 | DOI | MR | Zbl
[11] Eliseev A. G., Ratnikova T. A., “Singularly perturbed cauchy problem in the presence of the rational simple pivot point of the limit operator”, Differencialnie Uravnenia i Protsesy Upravlenia, 2019, no. 3, 63–73 | Zbl
[12] Eliseev A. G., “Regularized solution of a singularly perturbed cauchy problem in the presence of irrational simple turning point”, Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 2, 15–32 | Zbl
[13] Eliseev P. V., “A singularly perturbed cauchy problem for a parabolic equation in the presence of the “weak” turning point of the limit operator”, Mathematical Notes of NEFU, 57:3 (2020), 3–15
[14] Eliseev A. G., Eliseev P. V., “Regularized asymptotics of solution a singularly perturbed Cauchy problem in the presence of the «weak» turning point at the limit operator”, Differencialnie Uravnenia i Protsesy Upravlenia, 2020, no. 1, 55–67 | Zbl
[15] Eliseev A. G., Eliseev P. V., “Singularly Perturbed Cauchy Problem in Which the Limit Operator has Multiple Spectrum and a Weak First-Order Turning Point”, Differential Equations, 58:6 (2022), 727–740 | DOI | MR | Zbl
[16] Eliseev A. G., “Example of Solution of a Singularly Perturbed Cauchy Problem for a Parabolic Eqiuation in the Presence of strong Turning Point”, Differencialnie Uravnenia i Protsesy Upravlenia, 2022, no. 3, 46–58 | Zbl
[17] Landau L. D., Lifshitz E. M., Course of theoretical physics, v. 3, Quantum mechanics (non-relativistic theory), 2008
[18] Arnol'd V. I., “On matrices depending on parameters”, Russian Math. Surveys, 26:2 (1971), 29–43 | DOI | MR
[19] Liouville J., “Second Mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramétre variable”, Journal de Mathématiques Pures et Appliquées, 1837, 16–35
[20] Elsgolts L. E., Differentsial'nyye uravneniya i variatsionnoye ischisleniye, Nauka, M., 1969 (In Russ.)