Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a4, author = {A. G. Eliseev and P. V. Kirichenko}, title = {Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of {Schrodinger} type in the presence of a strong turning point for the limit operator}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {50--68}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/} }
TY - JOUR AU - A. G. Eliseev AU - P. V. Kirichenko TI - Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator JO - Čebyševskij sbornik PY - 2023 SP - 50 EP - 68 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/ LA - ru ID - CHEB_2023_24_1_a4 ER -
%0 Journal Article %A A. G. Eliseev %A P. V. Kirichenko %T Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator %J Čebyševskij sbornik %D 2023 %P 50-68 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/ %G ru %F CHEB_2023_24_1_a4
A. G. Eliseev; P. V. Kirichenko. Regularized asymptotics of the solution of a singularly perturbed mixed problem on the semiaxis for an equation of Schrodinger type in the presence of a strong turning point for the limit operator. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 50-68. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a4/