The problem of solvability of a positive theory of an arbitrary group is algorithmically unsolvable
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 40-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper proved that it is impossible to build an algorithm that allows you to determine from an arbitrary finite task of the group whether it is solvable her positive theory. The specified group property is not Markov, so the fundamental Adyan-Rabin theorem does not apply to it.
Keywords: positive formula, positive group theory, positive group class theory, algorithmic solvability, algorithmic insolubility.
@article{CHEB_2023_24_1_a3,
     author = {V. G. Durnev and A. I. Zetkina},
     title = {The problem of solvability of a positive theory of an arbitrary group is algorithmically unsolvable},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {40--49},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a3/}
}
TY  - JOUR
AU  - V. G. Durnev
AU  - A. I. Zetkina
TI  - The problem of solvability of a positive theory of an arbitrary group is algorithmically unsolvable
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 40
EP  - 49
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a3/
LA  - ru
ID  - CHEB_2023_24_1_a3
ER  - 
%0 Journal Article
%A V. G. Durnev
%A A. I. Zetkina
%T The problem of solvability of a positive theory of an arbitrary group is algorithmically unsolvable
%J Čebyševskij sbornik
%D 2023
%P 40-49
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a3/
%G ru
%F CHEB_2023_24_1_a3
V. G. Durnev; A. I. Zetkina. The problem of solvability of a positive theory of an arbitrary group is algorithmically unsolvable. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 40-49. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a3/

[1] Adyan S. I., “Algorithmic intractable problems of recognizing some properties of groups”, Dokl. USSR Academy of Sciences, 103:4 (1955), 533–535 | Zbl

[2] Adyan S, I., “Insolubility of some algorithmic problems of group theory”, Works of MMO, 6, 1957, 231–298 | MR | Zbl

[3] Rabin M. O., “Recursive unsolvability of group theoretic problems”, Ann. of Math., 67:1 (1958), 172–194 | DOI | MR | Zbl

[4] Collings D. J., “On recognizing Hopf groups”, Arh. Math., 20 (1969), 235–240 | DOI | MR

[5] Miller C. F. III, “Decision problems for groups – servey and reflections”, Math. Sci. Res. Inst. Publ., 23 (1992), 1–59 | MR | Zbl

[6] Miller C. F. III, Schupp P.E., “Embeddings into Hopfian groups”, Journal Algebra, 17 (1971), 171–176 | DOI | MR | Zbl

[7] Miller C. F. III, On group-theoretic decision problems and their classification, Ann. of Math. Studies, 68, Princeton University Press, 1971 | MR | Zbl

[8] Merzlyakov Yu. I., “Positive formulas on free groups”, Algebra and logic, 5:4 (1966), 25–42 | Zbl

[9] Sacerdote G. S., “Almost all free products of groups have the same positive theory”, Journal Algebra, 27:3 (1973), 475–485 | DOI | MR | Zbl

[10] Peryazev N. A., “Positive indistinguishability of algebraic systems and completeness of positive theories”, Mathem. notes, 38:2 (1985), 208–212 | MR

[11] Peryazev N. A., “Positive theories of free monoids”, Algebra and logic, 32:2 (1993), 148–159 | MR | Zbl

[12] Remeslenikov V. N., “$\exists $-free groups”, Sib. mate. magazine, 30:6 (1989), 193–197 | MR

[13] Makanin G. S., “Solvability of universal and positive free theories groups”, Isv. USSR Academy of Sciences. Matem series, 1984, no. 2, 35–749

[14] Matiyasevich Yu. V., “Diophancy of enumerated sets”, Dokl. USSR Academy of Sciences, 130:3 (1970), 495–498

[15] Maltsev A. I., “About one correspondence between rings and groups”, Mathem. Sat., 50:2 (1960), 257–266 | Zbl

[16] Borisov V. V., “Simple examples of groups with an unsolvable identity problem”, Mathem. notes, 6:5 (1969), 521–532 | Zbl