Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a2, author = {A. I. Denisov and I. V. Denisov}, title = {Nonlinear method of angular boundary functions in problems with cubic nonlinearities}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {27--39}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a2/} }
TY - JOUR AU - A. I. Denisov AU - I. V. Denisov TI - Nonlinear method of angular boundary functions in problems with cubic nonlinearities JO - Čebyševskij sbornik PY - 2023 SP - 27 EP - 39 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a2/ LA - ru ID - CHEB_2023_24_1_a2 ER -
A. I. Denisov; I. V. Denisov. Nonlinear method of angular boundary functions in problems with cubic nonlinearities. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 27-39. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a2/
[1] Butuzov V.F., “Asymptotic Properties of the Solution of a Finite-Difference Equation with Small Steps in a Rectangular Region”, Computational Mathematics and Mathematical Physics, 12:3 (1972), 14–34 | DOI | MR
[2] Butuzov V.F., Nesterov A.V., “On one singularly perturbed equation of parabolic type"”, Bulletin of the Moscow University. Series 15: Computational Mathematics and Cybernetics, 1978, no. 2, 49–56 | Zbl
[3] Denisov I.V., “On the asymptotic expansion of the solution of a singularly perturbed elliptic equation in a rectangle”, Asymptotic methods of the theory of singularly perturbed equations and ill-posed problems, Collection of articles. scientific. tr., Ilim, Bishkek, 1991, 37
[4] Denisov I.V., “Angular Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Quadratic Nonlinearity”, Computational Mathematics and Mathematical Physics, 57:2 (2017), 253–271 | DOI | DOI | MR | Zbl
[5] Denisov I.V., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Monotonic Nonlinearity”, Computational Mathematics and Mathematical Physics, 58:4 (2018), 562–571 | DOI | DOI | MR | Zbl
[6] Denisov I.V., “On some classes of functions"”, Chebyshevskii Sbornik, X:2 (30) (2009), 79–108 | Zbl
[7] Denisov I.V., Denisov A.I., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonlinearities”, Computational Mathematics and Mathematical Physics, 59:1 (2019), 96–111 | DOI | DOI | MR | Zbl
[8] Denisov I.V., Denisov A.I., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Nonmonotonic Nonlinearities”, Computational Mathematics and Mathematical Physics, 59:9 (2019), 1518–1527 | DOI | DOI | MR | Zbl
[9] Denisov I.V., “Corner Boundary Layer in Boundary Value Problems for Singularly Perturbed Parabolic Equations with Cubic Nonlinearities”, Computational Mathematics and Mathematical Physics, 61:2 (2021), 242–253 | DOI | DOI | MR | Zbl
[10] Denisov I.V., “Corner Boundary Layer in Boundary Value Problems with Nonlinearities Having Stationary Points”, Computational Mathematics and Mathematical Physics, 61:11 (2021), 1855–1863 | DOI | DOI | MR | Zbl
[11] Denisov A.I., Denisov I.V., “Mathematical models of combustion processes”, Results of science and technology. Modern mathematics and its applications. Thematic reviews, 185, VINITI RAN, M., 2020, 50–57 | DOI
[12] Nefedov N.N., “The Method of Differential Inequalities for Some Singularly Pertubed Partial Differential Equations”, Differential Equations, 31:4 (1995), 668–671 | MR | Zbl
[13] Vasilyeva A.B., Butuzov V.F, Asymptotic methods in the theory of singular perturbations, Higher school, M., 1990 | MR
[14] Amann H., “On the Existence of Positive Solutions of Nonlinear Elliptic Boundary Value Problems”, Indiana Univ. Math. J., 21:2 (1971), 125–146 | DOI | MR
[15] Sattinger D.H., “Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR | Zbl
[16] Amann H., Nonlinear Analysis, coll. of papers in honor of E.H. Rothe, eds. L. Cesari et al., Acad press, cop., New York etc, 1978, 1–29 | MR