On the set of exceptions in the product of sets of natural numbers with asymptotic density~$1$
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 237-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article examines the following problem. Let there be two subsets of the set of natural numbers, which we denote as $A$ and $B$. Let it also be additionally known that the asymptotic density of these sets $A,B$ is $1$. We define the set of natural numbers that are representable as the product of these sets $AB$, that is, such elements $ab$, where $a\in A, b\in B$. We study the properties of this subset of products in the set of all natural numbers. The authors S. Bettin, D. Koukoulopoulos and C. Sanna in the article [1] proved, among other things, that the density of the set $AB$ is also equal to $1$. Moreover, a quantitative version of this statement was derived, namely, an estimate was obtained for the set $\mathbb{N}\setminus AB$, which we will denote by $\overline{AB}$. Namely, by these authors, in the case when quantitative upper bounds are known for $\overline{A}\cap[1,x] =\alpha(x)x, \overline{B}\cap[1,x] = \beta(x)x, \alpha(x),\beta(x) = O(1/(\log x)^a), x\rightarrow \infty$ the upper bound on the set $\overline{AB}\cap [1,x]$ is also derived. In this paper, we study the case when $\alpha, \beta$ tend to zero slower than in the above case and somewhat refine the upper bound on the set $\overline{AB}\cap[1,x]$. In this paper we consider the case of $\alpha(x), \beta(x) = O\bigl(\frac{1}{(\log\log x)^a}\bigr)$ for some fixed $a>1$. We borrow approaches, arguments and proof scheme from the mentioned work of three authors S. Bettin, D. Koukoulopoulos and C. Sanna [1].
Keywords: integer numbers, density, smooth numbers, product.
@article{CHEB_2023_24_1_a17,
     author = {Yu. N. Shteinikov},
     title = {On the set of exceptions in the product of sets of natural numbers with asymptotic density~$1$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {237--242},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a17/}
}
TY  - JOUR
AU  - Yu. N. Shteinikov
TI  - On the set of exceptions in the product of sets of natural numbers with asymptotic density~$1$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 237
EP  - 242
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a17/
LA  - ru
ID  - CHEB_2023_24_1_a17
ER  - 
%0 Journal Article
%A Yu. N. Shteinikov
%T On the set of exceptions in the product of sets of natural numbers with asymptotic density~$1$
%J Čebyševskij sbornik
%D 2023
%P 237-242
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a17/
%G ru
%F CHEB_2023_24_1_a17
Yu. N. Shteinikov. On the set of exceptions in the product of sets of natural numbers with asymptotic density~$1$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 237-242. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a17/

[1] Bettin, S., Koukoulopoulos, D., Sanna, C., “A note on the natural density of product sets”, Bull. Lond. Math. Soc., 53:5 (2021), 1407–1413 | DOI | MR | Zbl

[2] Cilleruelo, D. S. Ramana, and O. Ramare, “Quotient and product sets of thin subsets of the positive integers”, Proc. Steklov Inst. Math., 296:1 (2017), 52–64 | DOI | MR | Zbl

[3] Erdos, P., “Some remarks on number theory”, Riveon Lematematika, 9 (1955), 45–48 | MR

[4] Erdos, P., “An asymptotic inequality in the theory of numbers”, Vestnik Leningrad. Univ., 15:13 (1960), 41–49 | MR | Zbl

[5] Tenenbaum, G., “Un probleme de probabilite conditionnelle en arithmetique”, Acta Arith., 49:2 (1987), 165–187 | DOI | MR | Zbl

[6] Ford, K., “The distribution of integers with a divisor in a given interval”, Ann. of Math. (2), 168:2 (2008), 367–433 | DOI | MR | Zbl

[7] Koukoulopoulos, D., “On the number of integers in a generalized multiplication table”, J. Reine Angew. Math., 689 (2014), 33–99 | DOI | MR | Zbl

[8] Banks, William D., Shparlinski I., “Integers with a large smooth divisor”, Electronic journal of combinatorial number theory, 2007, no. 1, A17, 11 pp. | MR | Zbl

[9] Shteinikov Y.N., “On the distribution of elements semigroups of natural numbers”, Chebyshevskiǐ Sb., 13:3, 91–99 | Zbl