On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236
Voir la notice de l'article provenant de la source Math-Net.Ru
By using a functional defined on a pair of the assorted represention spaces of the connected subgroup of the proper Lorentz group, a formula for the Buschman–Erdelyi transform of the Legendre function (up to a factor) is derived. Also a formula for the Mehler–Fock transform of the Legendre function of an inverse argument is obtained. Moreover, a generalization of one known formula for the Mehler–Fock transform is derived.
Keywords:
Buschman–Erdelyi transform, Mehler–Fock transform, Legendre function.
@article{CHEB_2023_24_1_a16,
author = {I. A. Shilin},
title = {On {Buschman--Erdelyi} and {Mehler--Fock} transforms related to the group $SO_0(3,1)$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {228--236},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/}
}
I. A. Shilin. On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/