@article{CHEB_2023_24_1_a16,
author = {I. A. Shilin},
title = {On {Buschman{\textendash}Erdelyi} and {Mehler{\textendash}Fock} transforms related to the group $SO_0(3,1)$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {228--236},
year = {2023},
volume = {24},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/}
}
I. A. Shilin. On Buschman–Erdelyi and Mehler–Fock transforms related to the group $SO_0(3,1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/
[1] Gradshteyn I. S., Ryzhik I. M., Tables of integrals, series, and products, Academic Press, Amsterdam, 2007 | MR | MR
[2] Kratzer A., Franz W., Transzendente Functionen, Academische Verlafsgesellschapt, Leipzig, 1960 | MR
[3] Pridnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 3, More Special Functions, Gordon Breach Science Publishers, Amsterdam, 1986 | MR
[4] Pridnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 2, Special Functions, Gordon Breach Science Publishers, Amsterdam, 1986 | MR
[5] Sitnik S. M., “Operators of Buschman–Erdelyi transforms, their classification, basic properties, and applications”, Sci. Notes Belgorod State Univ., Series “Mathematics. Physics”, 39:11 (2015), 60–76 (In Russian)
[6] Fock V. A., “On the representation of an arbitrary function by an integral involving Legendre's function with a complex index”, Docklady Math., 39:7 (1943), 279–283
[7] Shilin I. A., Choi J., “Method of continual addition theorems and integral relations between the Coulomb functions and the Appell function $F_1$”, Comp. Math. Mathem. Phys., 62:9 (2022), 1486–1495
[8] Buschman R. G., “An inversion integral for a Legendre transformation”, American Math. Monthly, 69:4 (1962), 288–289 | DOI | MR | Zbl
[9] Copson E. T., “On a singular boundary value problem for an equation of hyperbolic type”, Rational Mech. Analysis, 1 (1957), 349–356 | DOI | MR
[10] Erdelyi A., “An integral equation involving Legendre functions”, J. SIAM, 12:1 (1964), 15–30 | MR | Zbl
[11] Mehler F. G., “Ueber eine mit den Kugel- und cylinderfunctionen verwandte function und ihre anwendung in der theorie elektricitatatsvertheilung”, Math. Annalen, 18:2 (1881), 161–194 | DOI | MR
[12] Rosenthal P., “On an inversion theorem for the general Mehler-Fock transform pair”, Pacific J. Math., 52:2 (1974), 539–545 | DOI | MR | Zbl
[13] Shilin I. A., Choi J., “On some relations between hyper Bessel–Clifford, Macdonald and Meijer functions and hyper Hankel–Clifford integrsl transforms”, Int. Transforms. Spec. Func., 34:10 (2023) | DOI | MR
[14] Shilin I. A., Choi J., “Maximal subalgebras in $\mathfrak{so}(2,1)$, addition theorems and Bessel–Clifford functions”, J. Analysis, 31:2 (2023), 719–732 | DOI | MR | Zbl
[15] Sneddon I. N., The Use of Integral Transforms, McGraw-Hill, N. Y., 1972 | Zbl
[16] Yakubovich S. B., Index transforms, World Scientific, Singapore, 1996 | MR | Zbl