On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236.

Voir la notice de l'article provenant de la source Math-Net.Ru

By using a functional defined on a pair of the assorted represention spaces of the connected subgroup of the proper Lorentz group, a formula for the Buschman–Erdelyi transform of the Legendre function (up to a factor) is derived. Also a formula for the Mehler–Fock transform of the Legendre function of an inverse argument is obtained. Moreover, a generalization of one known formula for the Mehler–Fock transform is derived.
Keywords: Buschman–Erdelyi transform, Mehler–Fock transform, Legendre function.
@article{CHEB_2023_24_1_a16,
     author = {I. A. Shilin},
     title = {On {Buschman--Erdelyi} and {Mehler--Fock} transforms related to the group $SO_0(3,1)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {228--236},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/}
}
TY  - JOUR
AU  - I. A. Shilin
TI  - On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 228
EP  - 236
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/
LA  - ru
ID  - CHEB_2023_24_1_a16
ER  - 
%0 Journal Article
%A I. A. Shilin
%T On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
%J Čebyševskij sbornik
%D 2023
%P 228-236
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/
%G ru
%F CHEB_2023_24_1_a16
I. A. Shilin. On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/

[1] Gradshteyn I. S., Ryzhik I. M., Tables of integrals, series, and products, Academic Press, Amsterdam, 2007 | MR | MR

[2] Kratzer A., Franz W., Transzendente Functionen, Academische Verlafsgesellschapt, Leipzig, 1960 | MR

[3] Pridnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 3, More Special Functions, Gordon Breach Science Publishers, Amsterdam, 1986 | MR

[4] Pridnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and Series, v. 2, Special Functions, Gordon Breach Science Publishers, Amsterdam, 1986 | MR

[5] Sitnik S. M., “Operators of Buschman–Erdelyi transforms, their classification, basic properties, and applications”, Sci. Notes Belgorod State Univ., Series “Mathematics. Physics”, 39:11 (2015), 60–76 (In Russian)

[6] Fock V. A., “On the representation of an arbitrary function by an integral involving Legendre's function with a complex index”, Docklady Math., 39:7 (1943), 279–283

[7] Shilin I. A., Choi J., “Method of continual addition theorems and integral relations between the Coulomb functions and the Appell function $F_1$”, Comp. Math. Mathem. Phys., 62:9 (2022), 1486–1495

[8] Buschman R. G., “An inversion integral for a Legendre transformation”, American Math. Monthly, 69:4 (1962), 288–289 | DOI | MR | Zbl

[9] Copson E. T., “On a singular boundary value problem for an equation of hyperbolic type”, Rational Mech. Analysis, 1 (1957), 349–356 | DOI | MR

[10] Erdelyi A., “An integral equation involving Legendre functions”, J. SIAM, 12:1 (1964), 15–30 | MR | Zbl

[11] Mehler F. G., “Ueber eine mit den Kugel- und cylinderfunctionen verwandte function und ihre anwendung in der theorie elektricitatatsvertheilung”, Math. Annalen, 18:2 (1881), 161–194 | DOI | MR

[12] Rosenthal P., “On an inversion theorem for the general Mehler-Fock transform pair”, Pacific J. Math., 52:2 (1974), 539–545 | DOI | MR | Zbl

[13] Shilin I. A., Choi J., “On some relations between hyper Bessel–Clifford, Macdonald and Meijer functions and hyper Hankel–Clifford integrsl transforms”, Int. Transforms. Spec. Func., 34:10 (2023) | DOI | MR

[14] Shilin I. A., Choi J., “Maximal subalgebras in $\mathfrak{so}(2,1)$, addition theorems and Bessel–Clifford functions”, J. Analysis, 31:2 (2023), 719–732 | DOI | MR | Zbl

[15] Sneddon I. N., The Use of Integral Transforms, McGraw-Hill, N. Y., 1972 | Zbl

[16] Yakubovich S. B., Index transforms, World Scientific, Singapore, 1996 | MR | Zbl