On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236

Voir la notice de l'article provenant de la source Math-Net.Ru

By using a functional defined on a pair of the assorted represention spaces of the connected subgroup of the proper Lorentz group, a formula for the Buschman–Erdelyi transform of the Legendre function (up to a factor) is derived. Also a formula for the Mehler–Fock transform of the Legendre function of an inverse argument is obtained. Moreover, a generalization of one known formula for the Mehler–Fock transform is derived.
Keywords: Buschman–Erdelyi transform, Mehler–Fock transform, Legendre function.
@article{CHEB_2023_24_1_a16,
     author = {I. A. Shilin},
     title = {On {Buschman--Erdelyi} and {Mehler--Fock} transforms related to the group $SO_0(3,1)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {228--236},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/}
}
TY  - JOUR
AU  - I. A. Shilin
TI  - On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 228
EP  - 236
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/
LA  - ru
ID  - CHEB_2023_24_1_a16
ER  - 
%0 Journal Article
%A I. A. Shilin
%T On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$
%J Čebyševskij sbornik
%D 2023
%P 228-236
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/
%G ru
%F CHEB_2023_24_1_a16
I. A. Shilin. On Buschman--Erdelyi and Mehler--Fock transforms related to the group $SO_0(3,1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 228-236. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a16/