Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a13, author = {I. S. Baskov}, title = {The {de~Rham} cohomology of the algebra of polynomial functions on a simplicial complex}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {203--212}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a13/} }
I. S. Baskov. The de~Rham cohomology of the algebra of polynomial functions on a simplicial complex. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 203-212. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a13/
[1] Arapura Donu, Kang Su-Jeong, “Kähler–de Rham cohomology and Chern classes”, Communications in Algebra, 39:4 (2011), 1153–1167 | DOI | MR | Zbl
[2] Baskov I., The de Rham cohomology of soft function algebras, 2022 2208.11431 | MR
[3] Billera Louis J., “The algebra of continuous piecewise polynomials”, Advances in Mathematics, 76:2 (1989), 170–183 | DOI | MR | Zbl
[4] Bott Raoul, Tu Loring W., Differential forms in algebraic topology, Springer, 1982 | MR | Zbl
[5] Bousfield Aldridge Knight, Gugenheim Victor K.A.M., On PL De Rham theory and rational homotopy type, Memoirs American Mathematical Soc, 179, 1976 | MR | Zbl
[6] Félix Yves, Halperin Stephen, Thomas Jean-Claude, Rational homotopy theory, Springer, 2012 | MR
[7] Félix Yves, Jessup Barry, Parent Paul-Eugène, “The combinatorial model for the Sullivan functor on simplicial sets”, Journal of Pure and Applied Algebra, 213:2 (2009), 231–240 | DOI | MR
[8] Gómez Francisco, “Simplicial types and polynomial algebras”, Archivum Mathematicum, 38:1 (2002), 27–36 | MR
[9] Griffiths Phillip, Morgan John, Rational Homotopy Theory and Differential Forms, Birkhäuser, 1981 | MR | Zbl
[10] Grothendieck Alexander, “On the de Rham cohomology of algebraic varieties”, Publications Mathématiques de l'IHÉS, 29, no. 1, 1966, 95–103 | DOI | MR | Zbl
[11] Hess Kathryn, “Rational Homotopy Theory”, Interactions between Homotopy Theory and Algebra, Summer School on Interactions Between Homotopy Theory and Algebra (University of Chicago, July 26-August 6, 2004, Chicago, Illinois), 2007, 175–202 | DOI | MR | Zbl
[12] Kan Daniel M., Miller Edward Y., “Sullivan's de Rham complex is definable in terms of its 0-forms”, Proceedings of the American Mathematical Society, 57:2 (1976), 337–339 | MR | Zbl
[13] Kunz Ernst, Kähler differentials, Friedr. Vieweg Sohn, 1986 | MR
[14] Sullivan Dennis, “Differential forms and the topology of manifolds”, Manifolds Tokyo, 1973, 37–49 | MR
[15] Sullivan Dennis, “Infinitesimal computations in topology”, Publications Mathématiques de l'IHÉS, 47, 1977, 269–331 | DOI | MR | Zbl