Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a12, author = {S. A. Aldashev}, title = {A criterion for the unique solvability of the spectral {Poincare} problem for a class of multidimensional hyperbolic equations}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {194--202}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a12/} }
TY - JOUR AU - S. A. Aldashev TI - A criterion for the unique solvability of the spectral Poincare problem for a class of multidimensional hyperbolic equations JO - Čebyševskij sbornik PY - 2023 SP - 194 EP - 202 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a12/ LA - ru ID - CHEB_2023_24_1_a12 ER -
%0 Journal Article %A S. A. Aldashev %T A criterion for the unique solvability of the spectral Poincare problem for a class of multidimensional hyperbolic equations %J Čebyševskij sbornik %D 2023 %P 194-202 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a12/ %G ru %F CHEB_2023_24_1_a12
S. A. Aldashev. A criterion for the unique solvability of the spectral Poincare problem for a class of multidimensional hyperbolic equations. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 194-202. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a12/
[1] Bitsadze A. V., Equations of mixed type, Academy of Sciences USSR, M., 1959, 164 pp. | MR
[2] Nakhushev A. M., Tasks with an offset for an equation in private derivatives, Science, M., 2006, 287 pp.
[3] Mikhlin S. G., Multidimensional singular integrals and integral equations, Fizmatgiz, M., 1962, 254 pp. | MR
[4] Aldashev S. A., “Criterion for unique solvability the Poincare spectral problem in a cylindrical domain for of the multidimensional wave equation”, Mat. Simulation of fractal processes, related problems of analysis and informatics, Proceedings of the I International Conference of Mol. Scientists, Scientific Research Institute PMA KBNC RAS, Nalchik, 2011, 35–39
[5] Aldashev S. A., Boundary value problems for multidimensional hyperbolic and mixed equations, Gylym, Almaty, 1994, 170 pp.
[6] Aldashev S. A., “On Darboux problems for one class multidimensional hyperbolic equations”, Differ. the equations, 34:1 (1998), 64–68 | MR | Zbl
[7] Kamke E., Handbook of ordinary differential equations, Science, M., 1965, 703 pp.
[8] Bateman G., Erdei A., Higher Transcendental Functions, v. 2, Science, M., 1974, 295 pp.
[9] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Science, M., 1976, 543 pp. | MR
[10] Tikhonov A. N., Samara A. A., Equations mathematical physics, Science, M., 1966, 724 pp. | MR
[11] Aldashev S. A., “The correctness of the Poincare problem in cylindrical domain for many-dimensional hyperbolic equations with the wave operator”, Computational and Applied Mathematician, 2013, no. 4(14), 68–76
[12] Smirnov V. I., The course of higher mathematics, ch. 2, v. 4, Science, M., 1981, 550 pp. | MR
[13] Aldashev S. A., “The correctness of the Poincar problem in cylindrical domain for a multi-dimensional wave equation”, Equations with quotients Derivatives, Modern mathematics and its applications, 67, 2010, 28–32
[14] Aldashev S.A., “The well-posedness of the Poincare problem in a cylindrical domain for the higher-dimensional wave equation”, Journal of Mathematical sciences, 173:2 (2011), 150–154 | DOI | MR | Zbl