Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a11, author = {M. Sh. Shabozov and G. A. Yusupov}, title = {On the best polynomial approximation of functions in the {Hardy} space $H_{q,R}, (1\le q\le\infty, R\ge 1)$}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {182--193}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/} }
TY - JOUR AU - M. Sh. Shabozov AU - G. A. Yusupov TI - On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$ JO - Čebyševskij sbornik PY - 2023 SP - 182 EP - 193 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/ LA - ru ID - CHEB_2023_24_1_a11 ER -
%0 Journal Article %A M. Sh. Shabozov %A G. A. Yusupov %T On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$ %J Čebyševskij sbornik %D 2023 %P 182-193 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/ %G ru %F CHEB_2023_24_1_a11
M. Sh. Shabozov; G. A. Yusupov. On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 182-193. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/