On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 182-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact inequalities are found between the best polynomial approximation of functions analytics in the disk $U_R:=\bigl\{z\in\mathbb{C}, |z|$ $R\ge1$ and the averaged modulus of continuity angular boundary values of the $m$th order derivatives. For the class $W_{q,R}^{(m)} \ (m\in\mathbb{Z}_+,$ $1\le q\le\infty, R\ge1)$ of functions $f\in H_{q,R}^{(m)}$ whose $m$-order derivatives $f^{(m)}$ belong to the Hardy space $H_{q,R}$ and satisfy the condition $\|f ^{(m)}\|_{q,R}\le1,$ the exact values of the upper bounds of the best approximations are calculated. Moreover, for the class $W^{(m)}_{q,R}(\Phi),$ consisting of all functions $f\in H_{q,R}^{(m)},$ for which any $k\in\mathbb{N}, m\in\mathbb{Z}_{+}, k>m$ the averaged moduli of continuity of the boundary values of the $m$th order derivative $f^{(m )},$ dominated in the system of points $\{\pi/k\}_{k\in\mathbb{N}}$ by the given function $\Phi,$ satisfy the condition \begin{equation*} \int\limits_{0}^{\pi/k}\omega\bigl(f^{(m)},t\bigr)_{q,R}dt\le\Phi(\pi/k), \end{equation*} the exact values of the Kolmogorov and Bernstein $n$-widths are calculated in the norm of the space $H_{q} \ (1\le q\le\infty).$ The results obtained generalize some results of L.V.Taikov on classes of analytic functions in a circle of radius $R\ge1.$
Keywords: the best approximation, Hardy space, modulus of continuity, majorizing function, $n$-widths.
@article{CHEB_2023_24_1_a11,
     author = {M. Sh. Shabozov and G. A. Yusupov},
     title = {On the best polynomial approximation of functions in the {Hardy} space $H_{q,R}, (1\le q\le\infty, R\ge 1)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {182--193},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - G. A. Yusupov
TI  - On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 182
EP  - 193
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/
LA  - ru
ID  - CHEB_2023_24_1_a11
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A G. A. Yusupov
%T On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
%J Čebyševskij sbornik
%D 2023
%P 182-193
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/
%G ru
%F CHEB_2023_24_1_a11
M. Sh. Shabozov; G. A. Yusupov. On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 182-193. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/

[1] Tikhomirov V.M., “Widths of sets in function spaces and the theory of best approximations”, Ukr. Matem. Journal, 15:3 (1960), 81–120 | MR | Zbl

[2] Taikov L.V., “On the best average approximation of some classes of analytic functions”, Math. Notes, 1:2 (1967), 155–162 | MR | Zbl

[3] Babenko K.I., “On the best approximations of a class of analytic functions”, Izv. Academy of Sciences of the USSR. Ser. math., 22:5 (1958), 631–640 | Zbl

[4] Taikov L.V., “Widths of some classes of analytic functions”, Math. Notes, 22:2 (1977), 285–295 | MR | Zbl

[5] Ainulloev N., Taikov L.V., “Best approximation in the sense of Kolmogorov of classes of functions analytic in the unit disc”, Math. Notes, 40:3 (1986), 699–705 | DOI | MR | Zbl

[6] Taikov L., “Some exact inequalities in the theory of approximation of functions”, Analysis Mathematica, 1976:2, 77–85 | DOI | Zbl

[7] Dveyrin M.Z., “Widths and $\varepsilon$-entropy of classes of functions that are analytic in the unit circle of functions”, Function theory, functional analysis and their applications, 23 (1975), 32–46 | MR

[8] Dveyrin M.Z., Chebanencko I., “On polynomial approximation in the weighted Banach spaces of analytic functions”, Mapping theory and approximation of functions, Nukova dumka, Kiev, 1983, 62–73

[9] Farkov Yu.A., “Widths of Hardy classes and Bergman classes on the ball in $\mathbb{C}^n$”, Uspekhi Mat. Nauk, 45:5(275) (1990), 197–198 | MR | Zbl

[10] Farkov Yu.A., “$n$-Widths, Faber expansion, and computation of analytic functions”, Journal of complexity, 12:1 (1996), 58–79 | DOI | MR | Zbl

[11] Fisher S.D., Stessin M.I., “The $n$-width of the unit ball of $H^{q}$”, Journal of Approx. Theory, 67:3 (1991), 347–356 | DOI | MR | Zbl

[12] Pinkus A., $n$-Widths in Approximation Theory, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985, 252 pp. | MR | Zbl

[13] Vakarchuk S.B., “On the widths of certain classes of functions analytic in the unit disc. I”, Ukr. Matem. Journal, 42:7 (1990), 873–881 | MR | Zbl

[14] Vakarchuk S.B., “On the widths of certain classes of functions analytic in the unit disc. II”, Ukr. Matem. Journal, 42:8 (1990), 1019–1026 | MR | Zbl

[15] Vakarchuk S.B., “Exact values of the widths of classes of functions analytic in the circle and the best linear methods of approximation”, Math. Notes, 72:5 (2002), 665–669 | DOI | MR | Zbl

[16] Vakarchuk S.B., “On some extremal problems in the theory of approximations in the complex plane”, Ukr. Matem. Journal, 56:9 (2004), 1155–1171 | MR | Zbl

[17] Shabozov M.Sh., Shabozov O.Sh., “Widths of some classes of analytic functions in the Hardy space $H_2$”, Math. Notes, 68:5 (2000), 796–800 | DOI | MR | Zbl

[18] Shabozov M.Sh., Yusupov G.A., “Best approximation and values of widths of some classes of analytic functions”, Dokl. RAN, 383:2 (2002), 171–174 | MR | MR | Zbl

[19] Vakarchuk S.B., Shabozov M.Sh., “The widths of classes of analytic functions in a disc”, Mat. Sbornik, 201:8 (2010), 3–22 | DOI | MR | Zbl

[20] Sigmund A., Trigonometric series, v. 1, Mir, M., 1965, 615 pp.

[21] Tikhomirov V. M., Some problems of theory of approximation, MSU, M., 1976, 304 pp.

[22] Taikov L.V., “Best approximations of differentiable functions in the metric of the space $L_2$”, Math. Notes, 22:4 (1977), 535–542 | MR | Zbl