On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 182-193

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact inequalities are found between the best polynomial approximation of functions analytics in the disk $U_R:=\bigl\{z\in\mathbb{C}, |z|$ $R\ge1$ and the averaged modulus of continuity angular boundary values of the $m$th order derivatives. For the class $W_{q,R}^{(m)} \ (m\in\mathbb{Z}_+,$ $1\le q\le\infty, R\ge1)$ of functions $f\in H_{q,R}^{(m)}$ whose $m$-order derivatives $f^{(m)}$ belong to the Hardy space $H_{q,R}$ and satisfy the condition $\|f ^{(m)}\|_{q,R}\le1,$ the exact values of the upper bounds of the best approximations are calculated. Moreover, for the class $W^{(m)}_{q,R}(\Phi),$ consisting of all functions $f\in H_{q,R}^{(m)},$ for which any $k\in\mathbb{N}, m\in\mathbb{Z}_{+}, k>m$ the averaged moduli of continuity of the boundary values of the $m$th order derivative $f^{(m )},$ dominated in the system of points $\{\pi/k\}_{k\in\mathbb{N}}$ by the given function $\Phi,$ satisfy the condition \begin{equation*} \int\limits_{0}^{\pi/k}\omega\bigl(f^{(m)},t\bigr)_{q,R}dt\le\Phi(\pi/k), \end{equation*} the exact values of the Kolmogorov and Bernstein $n$-widths are calculated in the norm of the space $H_{q} \ (1\le q\le\infty).$ The results obtained generalize some results of L.V.Taikov on classes of analytic functions in a circle of radius $R\ge1.$
Keywords: the best approximation, Hardy space, modulus of continuity, majorizing function, $n$-widths.
@article{CHEB_2023_24_1_a11,
     author = {M. Sh. Shabozov and G. A. Yusupov},
     title = {On the best polynomial approximation of functions in the {Hardy} space $H_{q,R}, (1\le q\le\infty, R\ge 1)$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {182--193},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
AU  - G. A. Yusupov
TI  - On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 182
EP  - 193
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/
LA  - ru
ID  - CHEB_2023_24_1_a11
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%A G. A. Yusupov
%T On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
%J Čebyševskij sbornik
%D 2023
%P 182-193
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/
%G ru
%F CHEB_2023_24_1_a11
M. Sh. Shabozov; G. A. Yusupov. On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 182-193. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a11/