On symmetries of 3-dimensional algebraic continued fractions
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 139-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove in detail a criterion for an algebraic continued fraction to have a proper palindromic symmetry in dimension 4. We also present a new proof of the criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry in dimension 4. As a multidimensional generalization of continued fractions, we consider Klein polyhedra.
Keywords: Klein polyhedra, algebraic lattices.
@article{CHEB_2023_24_1_a10,
     author = {I. A. Tlyustangelov},
     title = {On symmetries of 3-dimensional algebraic continued fractions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--181},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/}
}
TY  - JOUR
AU  - I. A. Tlyustangelov
TI  - On symmetries of 3-dimensional algebraic continued fractions
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 139
EP  - 181
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/
LA  - ru
ID  - CHEB_2023_24_1_a10
ER  - 
%0 Journal Article
%A I. A. Tlyustangelov
%T On symmetries of 3-dimensional algebraic continued fractions
%J Čebyševskij sbornik
%D 2023
%P 139-181
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/
%G ru
%F CHEB_2023_24_1_a10
I. A. Tlyustangelov. On symmetries of 3-dimensional algebraic continued fractions. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 139-181. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/

[1] Klein F., “Uber eine geometrische Auffassung der gewohnlichen Kettenbruchentwichlung”, Nachr. Ges. Wiss., Gottingen, 1895, no. 3, 357–359

[2] Korkina, E. I., “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl

[3] German, O. N., “Sails and norm minima of lattices”, Sbornik: Mathematics, 196:3 (2005), 31–60 | DOI | MR | Zbl

[4] German O. N., “Klein polyhedra and lattices with positive norm minima”, Journal de Théorie des Nombres de Bordeaux, 19 (2007), 157–190 | MR

[5] Karpenkov O. N., “Geometry of Continued Fractions”, Algorithms and Computation in Mathematics, 26, Springer-Verlag, 2013 | DOI | MR | Zbl

[6] German, O. N., Tlyustangelov, I. A., “Symmetries of a two-dimensional continued fraction”, Izv. Math., 85:4 (2021), 666–680 | DOI | DOI | MR | Zbl

[7] German O. N., Tlyustangelov I. A., “Palindromes and periodic continued fractions”, Moscow Journal of Combinatorics and Number Theory, 6:2–3 (2016), 354–373 | MR

[8] Borevich, Z. I., Shafarevich, I. R., Number theory, Pure Appl. Math., 20, Academic Press, New York-London, 1966 | MR | Zbl

[9] Galois É., “Demonstration d'un theoreme sur les fractions continues periodiques”, Ann. Math. Pures Appl. [Ann. Gergonne], 19 (1828), 294–301 | MR

[10] Legendre A. M., Théorie des nombres, 3 ed., Firmin Didot Fréres, Libraires, Paris, 1830

[11] Perron O., Die Lehre von den Kettenbrüchen, v. I, 3 Aufl., B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 | MR | Zbl

[12] Kraitchik M., Théorie des nombres, v. II, Analyse indéterminée du second degré et factorisation, Gauthier-Villars, Paris, 1926 | MR

[13] Tlyustangelov I. A., “Proper symmetries of 3-dimensional continued fractions”, Doklady Mathematics, 506:1 (2022), 73–82 | MR | Zbl

[14] Tlyustangelov I. A., “Proper cyclic symmetries of multidimensional continued fractions”, Sbornik: Mathematics, 213:9 (2022), 138–166 | DOI | MR