On symmetries of 3-dimensional algebraic continued fractions
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 139-181

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove in detail a criterion for an algebraic continued fraction to have a proper palindromic symmetry in dimension 4. We also present a new proof of the criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry in dimension 4. As a multidimensional generalization of continued fractions, we consider Klein polyhedra.
Keywords: Klein polyhedra, algebraic lattices.
@article{CHEB_2023_24_1_a10,
     author = {I. A. Tlyustangelov},
     title = {On symmetries of 3-dimensional algebraic continued fractions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--181},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/}
}
TY  - JOUR
AU  - I. A. Tlyustangelov
TI  - On symmetries of 3-dimensional algebraic continued fractions
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 139
EP  - 181
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/
LA  - ru
ID  - CHEB_2023_24_1_a10
ER  - 
%0 Journal Article
%A I. A. Tlyustangelov
%T On symmetries of 3-dimensional algebraic continued fractions
%J Čebyševskij sbornik
%D 2023
%P 139-181
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/
%G ru
%F CHEB_2023_24_1_a10
I. A. Tlyustangelov. On symmetries of 3-dimensional algebraic continued fractions. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 139-181. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/