On symmetries of 3-dimensional algebraic continued fractions
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 139-181
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove in detail a criterion for an algebraic continued fraction to have a proper palindromic symmetry in dimension 4. We also present a new proof of the criterion for an algebraic continued fraction to have a proper cyclic palindromic symmetry in dimension 4. As a multidimensional generalization of continued fractions, we consider Klein polyhedra.
Keywords:
Klein polyhedra, algebraic lattices.
@article{CHEB_2023_24_1_a10,
author = {I. A. Tlyustangelov},
title = {On symmetries of 3-dimensional algebraic continued fractions},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {139--181},
publisher = {mathdoc},
volume = {24},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/}
}
I. A. Tlyustangelov. On symmetries of 3-dimensional algebraic continued fractions. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 139-181. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a10/