The Ritz method for solving partial differential equations using number-theoretic grids
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 117-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the problem \begin{gather*} L u(\vec x) = f(\vec x), \\ u(\vec x)\big|_{\partial {G_s}}\big.=g(\vec x), \end{gather*} where $f(\vec x), g(\vec x) \in E_s^{\alpha}$, $L$ is a linear differential operator with constant coefficients, $G_s$ is the unit cube $[0; 1]^s$. Its solution is reduced to finding the minimum of the functional \begin{equation*} v(u(\vec x)) =\underset{G_s}{\int\ldots\int} F\left(\vec x, u, u_{x_1}, \ldots, u_{x_s}\right) dx_1\ ldots dx_s \end{equation*} under given boundary conditions. The values of the functional $v(u(\vec x))$ in the Ritz method are considered not on the set of all admissible functions $u(\vec x)$, but on linear combinations $$ u(\vec x) = W_0(\vec x) + \sum_{k=1}^{n}w_kW_k(\vec x), $$ where $W_k(\vec x)$ are some basic functions that we will find using number-theoretic interpolation, and $W_0(\vec x)$ is a function that satisfies the given boundary conditions, and the rest $W_k( \vec x)$ satisfy homogeneous boundary conditions. On these polynomials, this functional turns into a function $\varphi (\vec w)$ of the coefficients $w_1, \ldots, w_n$. These coefficients are chosen so that the function $\varphi (\vec w)$ reaches an extremum. Under some restrictions on the functional $v(u(\vec x))$ and the basis functions $W_k(\vec x)$, we obtain an approximate solution of the boundary value problem.
Keywords: number-theoretic method, partial differential equations, variational methods.
@article{CHEB_2022_23_5_a9,
     author = {A. V. Rodionov},
     title = {The {Ritz} method for solving partial differential equations using number-theoretic grids},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a9/}
}
TY  - JOUR
AU  - A. V. Rodionov
TI  - The Ritz method for solving partial differential equations using number-theoretic grids
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 117
EP  - 129
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a9/
LA  - ru
ID  - CHEB_2022_23_5_a9
ER  - 
%0 Journal Article
%A A. V. Rodionov
%T The Ritz method for solving partial differential equations using number-theoretic grids
%J Čebyševskij sbornik
%D 2022
%P 117-129
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a9/
%G ru
%F CHEB_2022_23_5_a9
A. V. Rodionov. The Ritz method for solving partial differential equations using number-theoretic grids. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 117-129. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a9/

[1] Knizhnerman L. A., Prilozhenie metoda optimalnykh koeffitsientov k chislennomu resheniyu uravnenii v chastnykh proizvodnykh, Dis. ... kand. fiziko-matematicheskie nauki: 01.01.06, 01.01.07, RGB, M., 2006

[2] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, DAN SSSR, 124:6 (1959), 1207–1210

[3] Dobrovolskii N. M., Esayan A. R., Andreeva O. V., Zaitseva N. V., “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1(9) (2004), 122–143

[4] Zhileikin Ya. M., “O priblizhennom resheniii zadachi Dirikhle dlya uravneniya Laplasa”, Dokl. AN SSSR, 155:5 (1964), 999–1002

[5] Zhileikin Ya. M., “O metode priblizhennogo resheniya zadachi Dirikhle dlya uravneniya Laplasa v pryamougolnom parallelepipede”, Zhurn. vychislitelnoi matematiki i matem. fiziki, 5:2 (1965), 345–347

[6] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[7] A. V. Rodionov, “O metode N. M. Korobova priblizhennogo resheniya zadachi Dirikhle”, Chebyshevskii sbornik, 15:3 (2014), 48–85

[8] Ryabenkii V. S., “Ob odnom sposobe polucheniya raznostnykh skhem i ob ispolzovanii teoretiko-chislovykh setok dlya resheniya zadachi Koshi metodom konechnykh raznostei”, Tr. matem. in-ta im. V. A. Steklova, 60, 1961, 232–237

[9] Stoyantsev V. T., “Reshenie zadachi Koshi dlya parabolicheskogo uravneniya metodom kvazi Monte-Karlo”, Zhurn. vychislitelnoi matematiki i matem. fiziki, 13:5 (1973), 1153–1160

[10] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969, 425 pp.

[11] W. Ritz, “Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik”, Journal für die Reine und Angewandte Mathematik,, 135 (1909), 1–61