Reducing smooth functions to normal forms near critical points
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 101-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to “uniform” reduction of smooth functions on $2$-manifolds to canonical form near critical points of the functions by some coordinate changes in some neighborhoods of these points. A function $f(x,y)$ has a singularity of the type $A_k$, $E_6$, or $E_8$ at its critical point if, in some local coordinate system centered at this point, the Taylor series of the function has the form $x^2+y^{k+1}+R_{2,k+1}$, $x^3+y^4+R_{3,4}$, $x^3+y^5+R_{3,5}$ respectively, where $R_{m,n}$ stands for a sum of higher order terms, i.e., $R_{m,n}=\sum a_{ij}x^iy^j$ where $\frac{i}{m}+\frac{j}{n}>1$. In according to a result by V. I. Arnold (1972), these singularities are simple and can be reduced to the canonical form with $R_{m,n}=0$ by a smooth coordinate change. For the singularity types $A_k$, $E_6$, and $E_8$, we explicitly construct such a coordinate change and estimate from below (in terms of $C^r$-norm of the function, where $r=k+3$, $7$, and $8$ respectively) the maximal radius of a neighborhood in which the coordinate change is defined. Our coordinate change provides a “uniform” reduction to the canonical form in the sense that the radius of the neighborhood and the coordinate change we constructed in it (as well as all partial derivatives of the coordinate change) continuously depend on the function $f$ and its partial derivatives.
Keywords: right equivalence of smooth functions, ADE-singularities, normal form of singularities, uniform reducing to normal form.
@article{CHEB_2022_23_5_a8,
     author = {A. S. Orevkova},
     title = {Reducing smooth functions to normal forms near critical points},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {101--116},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a8/}
}
TY  - JOUR
AU  - A. S. Orevkova
TI  - Reducing smooth functions to normal forms near critical points
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 101
EP  - 116
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a8/
LA  - en
ID  - CHEB_2022_23_5_a8
ER  - 
%0 Journal Article
%A A. S. Orevkova
%T Reducing smooth functions to normal forms near critical points
%J Čebyševskij sbornik
%D 2022
%P 101-116
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a8/
%G en
%F CHEB_2022_23_5_a8
A. S. Orevkova. Reducing smooth functions to normal forms near critical points. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 101-116. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a8/

[1] Arnol'd V. I., “Normal forms for functions near degenerate critical points, the Weyl groups of $A_k, D_k, E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272

[2] Brodersen H., “M-t topologically stable mappings are uniformly stable”, Math. Scand., 52 (1983), 61–68

[3] Kudryavtseva E. A., Lakshtanov E. L., “Classification of singularities and bifurcations of critical points of even functions”, Topological Methods in the Theory of Integrable Systems, eds. Bolsinov A.V., Fomenko A.T., Oshemkov A.A., Cambridge Scientific Publishers; Springer, 2006, 173–214, arXiv: 1212.4302

[4] Kudryavtseva E. A., “Uniform Morse lemma and isotope Morse functions on surfaces”, Moscow Univ. Math. Bull., 64:4 (2009), 150–158

[5] Kudryavtseva E. A., Permyakov D. A., “Framed Morse functions on surfaces”, Sbornik Math., 201:4 (2010), 501–567

[6] Kudryavtseva E. A., “The Topology of Spaces of Morse Functions on Surfaces”, Math. Notes, 92:2 (2012), 219–236, arXiv: 1104.4792

[7] Kudryavtseva E. A., “Special framed Morse functions on surfaces”, Moscow Univ. Math. Bull., 67:4 (2012), 151–157, arXiv: 1106.3116

[8] Kudryavtseva E. A., “On the homotopy type of spaces of Morse functions on surfaces”, Sb. Math., 204:1 (2013), 75–113, arXiv: 1104.4796

[9] Kudryavtseva E. A., “Topology of the spaces of functions with prescribed singularities on surfaces”, Doklady Math., 93:3 (2016), 264–266

[10] Kudryavtseva E. A., Topology of the spaces of functions and gradient-like flows with prescribed singularities on surfaces, 2021, arXiv: 2106.03017

[11] Mather J. N., “Infinitesimal stability implies stability”, Ann. of Math., 89 (1969), 254–291

[12] Samoilenko A. M., “The equivalence of a smooth function to a Taylor polynomial in the neighborhood of a finite-type critical point”, Funct. Anal. Appl., 2:4 (1968), 318–323

[13] Sergeraert F., “Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications”, Annales scientifiques de l'É.N.S. 4e série, 5:4 (1972), 599–660

[14] Tougeron J. C., “Ideaux de fonctions differentiables. I”, Ann. Inst. Fourier, 18:1 (1968), 177–240