Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_5_a8, author = {A. S. Orevkova}, title = {Reducing smooth functions to normal forms near critical points}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {101--116}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a8/} }
A. S. Orevkova. Reducing smooth functions to normal forms near critical points. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 101-116. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a8/
[1] Arnol'd V. I., “Normal forms for functions near degenerate critical points, the Weyl groups of $A_k, D_k, E_k$ and Lagrangian singularities”, Funct. Anal. Appl., 6:4 (1972), 254–272
[2] Brodersen H., “M-t topologically stable mappings are uniformly stable”, Math. Scand., 52 (1983), 61–68
[3] Kudryavtseva E. A., Lakshtanov E. L., “Classification of singularities and bifurcations of critical points of even functions”, Topological Methods in the Theory of Integrable Systems, eds. Bolsinov A.V., Fomenko A.T., Oshemkov A.A., Cambridge Scientific Publishers; Springer, 2006, 173–214, arXiv: 1212.4302
[4] Kudryavtseva E. A., “Uniform Morse lemma and isotope Morse functions on surfaces”, Moscow Univ. Math. Bull., 64:4 (2009), 150–158
[5] Kudryavtseva E. A., Permyakov D. A., “Framed Morse functions on surfaces”, Sbornik Math., 201:4 (2010), 501–567
[6] Kudryavtseva E. A., “The Topology of Spaces of Morse Functions on Surfaces”, Math. Notes, 92:2 (2012), 219–236, arXiv: 1104.4792
[7] Kudryavtseva E. A., “Special framed Morse functions on surfaces”, Moscow Univ. Math. Bull., 67:4 (2012), 151–157, arXiv: 1106.3116
[8] Kudryavtseva E. A., “On the homotopy type of spaces of Morse functions on surfaces”, Sb. Math., 204:1 (2013), 75–113, arXiv: 1104.4796
[9] Kudryavtseva E. A., “Topology of the spaces of functions with prescribed singularities on surfaces”, Doklady Math., 93:3 (2016), 264–266
[10] Kudryavtseva E. A., Topology of the spaces of functions and gradient-like flows with prescribed singularities on surfaces, 2021, arXiv: 2106.03017
[11] Mather J. N., “Infinitesimal stability implies stability”, Ann. of Math., 89 (1969), 254–291
[12] Samoilenko A. M., “The equivalence of a smooth function to a Taylor polynomial in the neighborhood of a finite-type critical point”, Funct. Anal. Appl., 2:4 (1968), 318–323
[13] Sergeraert F., “Un théorème de fonctions implicites sur certains espaces de Fréchet et quelques applications”, Annales scientifiques de l'É.N.S. 4e série, 5:4 (1972), 599–660
[14] Tougeron J. C., “Ideaux de fonctions differentiables. I”, Ann. Inst. Fourier, 18:1 (1968), 177–240