On simultaneous approximations to the logarithms of primes
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 87-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the first part of the paper, a modification of elementary Titchmarsh's method is applied to the proof of the local Kronecker's theorem. For any finite real sequence $\boldsymbol{\bar{\lambda}} = (\lambda_{1},\ldots,\lambda_{r})$ of linearly independent (over $\mathbb{Q}$) numbers and for any $\varepsilon>0$, this method leads to the explicit upper bound of the value $h = h(\varepsilon,\boldsymbol{\bar{\lambda}})$ with the following property: for any real sequence $\boldsymbol{\bar{\alpha}} = (\alpha_{1},\ldots,\alpha_{r})$, any interval of the length $h$ contains a point $t$ such that $\|t\lambda_{s}-\alpha_{s}\|\leqslant\varepsilon$, $1\leqslant s\leqslant r$. Such estimate is weaker than the best known, but it's proof is quite simple and leads to the same (in essence) results in the applications. The second part contains the short memoirs concerning the academician Alexey Nikolaevich Parshin who passed away on June, 18 this year.
Keywords: local Kronecker's theorem, simultaneous approximations, logarithms of primes, squarefree numbers.
@article{CHEB_2022_23_5_a7,
     author = {M. A. Korolev and I. S. Rezvyakova},
     title = {On simultaneous approximations to the logarithms of primes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {87--100},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a7/}
}
TY  - JOUR
AU  - M. A. Korolev
AU  - I. S. Rezvyakova
TI  - On simultaneous approximations to the logarithms of primes
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 87
EP  - 100
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a7/
LA  - ru
ID  - CHEB_2022_23_5_a7
ER  - 
%0 Journal Article
%A M. A. Korolev
%A I. S. Rezvyakova
%T On simultaneous approximations to the logarithms of primes
%J Čebyševskij sbornik
%D 2022
%P 87-100
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a7/
%G ru
%F CHEB_2022_23_5_a7
M. A. Korolev; I. S. Rezvyakova. On simultaneous approximations to the logarithms of primes. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 87-100. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a7/

[1] Kronecker L., “Näherungsweise ganzzahlige Auflösung linearer Gleichungen”, Monats. Königl. Preuss. Akad. Wiss. Berlin, 1884, 1179–1193

[2] Hensel K. (ed.), Leopold Kronecker's Werke, v. III, Teubner, Leipzig, 1899

[3] Hardy G. H., Wright E. M., An introduction to the theory of numbers, 4th ed., Clarendon Press, Oxford, 1975

[4] Turán P., “A theorem on diophantine approximation with application to Riemann zeta-function”, Acta Sci. Math. (Szeged), 21 (1960), 311–318

[5] Gonek S. M., Montgomery H. L., “Kronecker's approximation theorem”, Indag. Math. (N.S.), 27:2 (2016), 506–523

[6] Titchmarsh E.K., Teoriya dzeta-funktsii Rimana, M., Izd-vo inostr. lit., 1953

[7] Bohr H., “Again the Kronecker Theorem”, J. Lond. Math. Soc., 9 (1934), 5–6

[8] Konyagin S. V., Korolev M. A., “O yavlenii Titchmarsha v teorii dzeta-funktsii Rimana”, Teoriya priblizhenii, funktsionalnyi analiz i prilozheniya, Sbornik statei. K 70-letiyu akademika Borisa Sergeevicha Kashina, Trudy MIAN, 318, MIAN, M., 2022, 182–201

[9] Besikovitch A. S., “On the linear independence of fractional powers of integers”, J. London Math. Soc., 15 (1940), 3–6

[10] Chandrasekkharan K., Arifmeticheskie funktsii, Nauka, M., 1975

[11] Selberg A., On the remainder term in the lattice point problem of the circle, Manuscript http://publications.ias.edu/selberg/section/2494

[12] Heath-Brown D. R., “The distribution and moments of the error term in the Dirichlet divisor problem”, Acta Arith., 60:4 (1992), 389–415

[13] Korolev M. A., Popov D. A., “Ob integrale Yutily v probleme kruga”, Izv. RAN. Ser. matem., 86:3 (2022), 3–46

[14] Bukhshtab A. A., Teoriya chisel, Uchpedgiz, M., 1960

[15] Mordell L. J., “On the linear independence of algebraic numbers”, Pacific J. Math., 3:3 (1953), 625–630

[16] Khua L.-K., Metod trigonometricheskikh summ i ego primenenie v teorii chisel, Mir, M., 1964