Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_5_a6, author = {D. A. Ilyukhin}, title = {The {Fermat--Torricelli} problem in the case of three-point sets in normed planes}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {72--86}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a6/} }
D. A. Ilyukhin. The Fermat--Torricelli problem in the case of three-point sets in normed planes. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 72-86. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a6/
[1] Bajaj C., “The algebraic degree of geometric optimization problems”, Discr. Comput. Geom., 3 (1988), 177–191
[2] Bannikova A. G., Ilyutko D. P., Nikonov I. M., “The Length of an Extremal Network in a Normed Space: Maxwell Formula”, Journal of Mathematical Sciences, 214:5 (2016), 593–608
[3] Boltyanski V., Martini H., Soltan V., Geometric methods and optimization problems, Kluwer Acad. Publ., 1999
[4] Brazil M., Graham R. L., Thomas D. A., Zachariasen M., On the History of the Euclidean Steiner Tree Problem, 2013
[5] Cieslik D., “The Fermat-Steiner-Weber-problem in Minkowski spaces”, Optimization, 19 (1988), 485–489
[6] Cockayne E. J., Melzak Z. A., “Euclidean constructibility in graph-minimization problems”, Math. Mag., 42 (1969), 206–208
[7] Courant R., Robbins H., What Is Mathematics?, Oxford University Press, 1941
[8] Durier R., Michelot C., “Geometrical properties of the Fermat-Weber problem”, Europ. J. Oper. Res., 20 (1985), 332–343
[9] Hwang F. K., Richards D., Winter P., The Steiners Tree Problem, Elsevier Science Publishers, 1992
[10] Ilyutko D. P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Matem. sb., 197:5 (2006), 75–98
[11] Ilyutko D. P., Nikonov I. M., “Ekstremalnye seti na $\lambda$-normirovannoi ploskosti, gde $\lambda$=3,4,6”, Matem. sb., 208:4 (2017), 17–50
[12] Ivanov A. O., Tuzhilin A. A., “Razvetvlennye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. matem., 66:5 (2002), 33–82
[13] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.-Izhevsk, 2003
[14] Ivanov A. O., Tuzhilin A. A., Minimal Networks. Steiner Problem and Its Generalizations, CRC Press, 1994
[15] Jarník V., Kössler M., “O minimálních grafech obsahujících n daných bodu”, Čas, Pêstování Mat. (Essen), 63 (1934), 223–235
[16] Kupitz Y. S., Martini H., “Geometric aspects of the generalized Fermat–Torricelli problem”, Bolyai Society Mathematical Studies, 6, 1997, 55–127
[17] Laut I. L., Ovsyannikov Z. N., “Vid minimalnykh razvetvlennykh geodezicheskikh v normirovannom prostranstve opredelyaet normu”, Fundamentalnaya i prikladnaya matematika, 18:2 (2013), 67–77
[18] Martini H., Swanepoel K. J., Weis G., “The Fermat–Torricelli problem in normed planes and spaces”, Journal of Optimization Theory and Applications, 115 (2002), 283–314
[19] Nguyen S. D., Constrained Fermat-Torricelli-Weber Problem in real Hilbert Spaces, 2018, arXiv: 1806.04296
[20] Torricelli E., De maximis et minimis, Opere di Evangelista Torricelli, Faenza, Italy, 1919
[21] Uteshev A. Y., “Analytical solution for the generalized Fermat-Torricelli problem”, The American Mathematical Monthly, 121:4 (2014), 318–331
[22] Zachos A. N., An analytical solution of the weighted Fermat-Torricelli problem on the unit sphere, 2014, arXiv: 1408.6495