The Fermat--Torricelli problem in the case of three-point sets in normed planes
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 72-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the Fermat–Torricelli problem is considered. The problem asks a point minimizing the sum of distances to arbitrarily given points in $d$-dimensional real normed spaces. Various generalizations of this problem are outlined, current methods of solving and some recent results in this area are presented. The aim of the article is to find an answer to the following question: in what norms on the plane is the solution of the Fermat–Torricelli problem unique for any three points. The uniqueness criterion is formulated and proved in the work, in addition, the application of the criterion on the norms set by regular polygons, the so-called lambda planes, is shown.
Keywords: Fermat–Torricelli problem, norming functional, lambda-plane.
@article{CHEB_2022_23_5_a6,
     author = {D. A. Ilyukhin},
     title = {The {Fermat--Torricelli} problem in the case of three-point sets in normed planes},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {72--86},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a6/}
}
TY  - JOUR
AU  - D. A. Ilyukhin
TI  - The Fermat--Torricelli problem in the case of three-point sets in normed planes
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 72
EP  - 86
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a6/
LA  - ru
ID  - CHEB_2022_23_5_a6
ER  - 
%0 Journal Article
%A D. A. Ilyukhin
%T The Fermat--Torricelli problem in the case of three-point sets in normed planes
%J Čebyševskij sbornik
%D 2022
%P 72-86
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a6/
%G ru
%F CHEB_2022_23_5_a6
D. A. Ilyukhin. The Fermat--Torricelli problem in the case of three-point sets in normed planes. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 72-86. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a6/

[1] Bajaj C., “The algebraic degree of geometric optimization problems”, Discr. Comput. Geom., 3 (1988), 177–191

[2] Bannikova A. G., Ilyutko D. P., Nikonov I. M., “The Length of an Extremal Network in a Normed Space: Maxwell Formula”, Journal of Mathematical Sciences, 214:5 (2016), 593–608

[3] Boltyanski V., Martini H., Soltan V., Geometric methods and optimization problems, Kluwer Acad. Publ., 1999

[4] Brazil M., Graham R. L., Thomas D. A., Zachariasen M., On the History of the Euclidean Steiner Tree Problem, 2013

[5] Cieslik D., “The Fermat-Steiner-Weber-problem in Minkowski spaces”, Optimization, 19 (1988), 485–489

[6] Cockayne E. J., Melzak Z. A., “Euclidean constructibility in graph-minimization problems”, Math. Mag., 42 (1969), 206–208

[7] Courant R., Robbins H., What Is Mathematics?, Oxford University Press, 1941

[8] Durier R., Michelot C., “Geometrical properties of the Fermat-Weber problem”, Europ. J. Oper. Res., 20 (1985), 332–343

[9] Hwang F. K., Richards D., Winter P., The Steiners Tree Problem, Elsevier Science Publishers, 1992

[10] Ilyutko D. P., “Razvetvlennye ekstremali funktsionala $\lambda$-normirovannoi dliny”, Matem. sb., 197:5 (2006), 75–98

[11] Ilyutko D. P., Nikonov I. M., “Ekstremalnye seti na $\lambda$-normirovannoi ploskosti, gde $\lambda$=3,4,6”, Matem. sb., 208:4 (2017), 17–50

[12] Ivanov A. O., Tuzhilin A. A., “Razvetvlennye geodezicheskie v normirovannykh prostranstvakh”, Izv. RAN. Ser. matem., 66:5 (2002), 33–82

[13] Ivanov A. O., Tuzhilin A. A., Teoriya ekstremalnykh setei, Institut kompyuternykh issledovanii, M.-Izhevsk, 2003

[14] Ivanov A. O., Tuzhilin A. A., Minimal Networks. Steiner Problem and Its Generalizations, CRC Press, 1994

[15] Jarník V., Kössler M., “O minimálních grafech obsahujících n daných bodu”, Čas, Pêstování Mat. (Essen), 63 (1934), 223–235

[16] Kupitz Y. S., Martini H., “Geometric aspects of the generalized Fermat–Torricelli problem”, Bolyai Society Mathematical Studies, 6, 1997, 55–127

[17] Laut I. L., Ovsyannikov Z. N., “Vid minimalnykh razvetvlennykh geodezicheskikh v normirovannom prostranstve opredelyaet normu”, Fundamentalnaya i prikladnaya matematika, 18:2 (2013), 67–77

[18] Martini H., Swanepoel K. J., Weis G., “The Fermat–Torricelli problem in normed planes and spaces”, Journal of Optimization Theory and Applications, 115 (2002), 283–314

[19] Nguyen S. D., Constrained Fermat-Torricelli-Weber Problem in real Hilbert Spaces, 2018, arXiv: 1806.04296

[20] Torricelli E., De maximis et minimis, Opere di Evangelista Torricelli, Faenza, Italy, 1919

[21] Uteshev A. Y., “Analytical solution for the generalized Fermat-Torricelli problem”, The American Mathematical Monthly, 121:4 (2014), 318–331

[22] Zachos A. N., An analytical solution of the weighted Fermat-Torricelli problem on the unit sphere, 2014, arXiv: 1408.6495