Some results for weighted Bernstein--Nikol'skii constants
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 45-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this short review paper, we present the latest results on the sharp Bernstein–Nikol'skii constants for polynomials on the multidimensional unit sphere in the space $L^{p}$ with the Dunkl weight and the Beltrami–Dunkl operator and related weight constants for polynomials and entire functions of exponential type and Gegenbauer and Bessel operators. For a long time, the classical trend in the theory of Bernstein–Nikol'skii inequalities was the establishment of an growth rate of constants depending on the growth of the degree of polynomials. The modern development of the theory is the proof of asymptotic equalities of Levin–Lubinsky-type, which refine the asymptotic equivalences. The main results here were obtained by F. Dai, M. Ganzburg, E. Levin, D. Lubinsky, S. Tikhonov, the authors of the work. We start from the previously proven relations between the multidimensional Bernstein–Nikol'skii constant and the one-dimensional constant for algebraic polynomials with the Gegenbauer weight and the Gegenbauer differential operator. In the case of the reflection group of an octahedron and a multiplicity function $\kappa$ such that $\min \kappa=0$, these constants are equal. As a corollary, for $p\ge 1$ this allows one to write down the Levin–Lubinsky asymptotic equalities of the Bernstein–Nikol'skii constants with an integer power of the Beltrami–Dunkl operator. The case $\min \kappa>0$ is considered for the case of Nikol'skii constants and the circle. For the subspace of even polynomials with even harmonics, a connection is established with the sharp Nikol'skii constant for polynomials on compact homogeneous spaces of rank 1. This made it possible to write the Levin–Lubinsky equality for pointwise constants for all $p>0$ and general constants for $p\ge 1$, which agrees with the known asymptotic inequality. The limit constants in the Levin–Lubinsky asymptotic equalities are expressed in terms of the Bernstein–Nikolskii constants for entire functions of exponential type on Euclidean space, half-axis with the power weight and Laplace, Laplace–Dunkl, Bessel operators. Further refinement of the values of the constants is connected with their estimation at large dimension of space or the weight exponent. In this paper, we present a scheme for obtaining such estimates for the case of the space $L^{1}$. This case is also interesting because it is related to the Remez extremal $L^{1}$-norm concentration problem.
Keywords: unit sphere, polynomial, Dunkl weight, Bernstein–Nikol'skii constant, Levin–Lubinsky equality, Remez problem.
@article{CHEB_2022_23_5_a4,
     author = {D. V. Gorbachev and N. N. Dobrovol'skii},
     title = {Some results for weighted {Bernstein--Nikol'skii} constants},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {45--56},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a4/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - N. N. Dobrovol'skii
TI  - Some results for weighted Bernstein--Nikol'skii constants
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 45
EP  - 56
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a4/
LA  - ru
ID  - CHEB_2022_23_5_a4
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A N. N. Dobrovol'skii
%T Some results for weighted Bernstein--Nikol'skii constants
%J Čebyševskij sbornik
%D 2022
%P 45-56
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a4/
%G ru
%F CHEB_2022_23_5_a4
D. V. Gorbachev; N. N. Dobrovol'skii. Some results for weighted Bernstein--Nikol'skii constants. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 45-56. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a4/

[1] Dai F., Gorbachev D., Tikhonov S., “Nikolskii constants for polynomials on the unit sphere”, J. d'Anal. Math., 140:1 (2020), 161–185

[2] Dai F., Gorbachev D., Tikhonov S., “Estimates of the asymptotic Nikolskii constants for spherical polynomials”, Journal of Complexity, 65 (2021), 101553

[3] Dai F., Tikhonov S., “Weighted fractional Bernstein's inequalities and their applications”, J. d'Anal. Math., 129 (2016), 33–68

[4] Dai F., Xu Yu, Approximation theory and harmonic analysis on spheres and balls, Springer, N.Y., 2013

[5] Ganzburg M.I., “Sharp constants of approximation theory. II. Invariance theorems and certain multivariate inequalities of different metrics”, Constr. Approx., 50 (2019), 543–577

[6] Gorbachev D.V., “Konstanty Nikolskogo–Bernshteina dlya neotritsatelnykh tselykh funktsii eksponentsialnogo tipa na osi”, Tr. IMM UrO RAN, 24, no. 4, 2018, 92–103

[7] Gorbachev D.V., “Konstanty Nikolskogo dlya kompaktnykh odnorodnykh prostranstv”, Chebyshevskii sbornik, 22:4 (2021), 100–113

[8] Gorbachev D.V., Dobrovolskii N.N., “Ob ekstremalnykh zadachakh tipa Nikolskogo–Bernshteina i Turana dlya preobrazovaniya Danklya”, Chebyshevskii sbornik, 20:3 (2019), 394–400

[9] Gorbachev D.V., Dobrovolskii N.N., “Konstanty Nikolskogo–Bernshteina v $L^{p}$ na sfere s vesom Danklya”, Chebyshevskii sbornik, 21:4 (2020), 302–307

[10] Gorbachev D.V., Dobrovolskii N.N., Martyanov I.A., “Utochnenie konstanty Bernshteina — Nikolskogo dlya sfery s vesom Danklya v sluchae gruppy oktaedra”, Chebyshevskii sbornik, 22:5 (2021), 354–358

[11] Gorbachev D.V., Ivanov V.I., “Konstanty Nikolskogo–Bernshteina dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa v vesovykh prostranstvakh”, Tr. IMM UrO RAN, 25, no. 2, 2019, 75–87

[12] Gorbachev D.V., Martyanov I.A., “Granitsy polinomialnykh konstant Nikolskogo v $L^{p}$ s vesom Gegenbauera”, Tr. IMM UrO RAN, 26, no. 4, 2020, 126–137

[13] Ivanov V.A., “O neravenstvakh Bernshteina — Nikolskogo i Favara na kompaktnykh odnorodnykh prostranstvakh ranga $1$”, UMN, 38:3 (231) (1983), 179–180

[14] Temlyakov V., Tikhonov S., “Remez-type and Nikol'skii-type inequalities: General relations and the hyperbolic cross polynomials”, Constr. Approx., 46 (2017), 593–615

[15] Xu Y., “Intertwining operator associated to symmetric groups and summability on the unit sphere”, J. Approx. Theory, 272 (2021), 105649