On the uniform distribution of remainders in the expression of real numbers over a multiplicative system numbers
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 38-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper theorems on the expression of real numbers on multiplicative number system. It pay a special attention to “explicit formulas” and conditions of the uniqueness of such representations. Here is found that the sequence remainders in this expansion has the uniform distribution. The given statement generalises the known result of Hardy–Littlewood for a positional system of calculus. On the base of proof lie two statement: the Weyl's criteria of the uniform distribution of a sequence modulo unit and the theoretic-probability lemma of Borel–Cantelli.
Keywords: multiplicative number system, real number expansion on this system, the sequence of remainders, the uniform distribution of remainders, G.Weyl criteria, lemma of Borel-Cantelli.
@article{CHEB_2022_23_5_a3,
     author = {A. K. Giyasi and I. P. Mikhailov and V. N. Chubarikov},
     title = {On the uniform distribution of remainders in the expression of real numbers over a multiplicative system numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {38--44},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a3/}
}
TY  - JOUR
AU  - A. K. Giyasi
AU  - I. P. Mikhailov
AU  - V. N. Chubarikov
TI  - On the uniform distribution of remainders in the expression of real numbers over a multiplicative system numbers
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 38
EP  - 44
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a3/
LA  - ru
ID  - CHEB_2022_23_5_a3
ER  - 
%0 Journal Article
%A A. K. Giyasi
%A I. P. Mikhailov
%A V. N. Chubarikov
%T On the uniform distribution of remainders in the expression of real numbers over a multiplicative system numbers
%J Čebyševskij sbornik
%D 2022
%P 38-44
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a3/
%G ru
%F CHEB_2022_23_5_a3
A. K. Giyasi; I. P. Mikhailov; V. N. Chubarikov. On the uniform distribution of remainders in the expression of real numbers over a multiplicative system numbers. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 38-44. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a3/

[1] Hardy G. H., Littlewood J. E., “The fractional part of $n^k\theta$”, Acta math., 37 (1914)

[2] Borel E., “Les probabilités dénombarables et leurs applications arithmétiques”, Rend Circolo math. Palermo, 27 (1909)

[3] Gelfond A. O., “Ob odnom obschem svoistve sistem schisleniya”, Izv. AN SSSR, ser. matem, 23 (1959); Избр.тр., 366–371

[4] Zeckendorf E., “Reprśentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. R. Sci. Liège, 41 (1972), 179–182 (in French)

[5] Dickson L. E., History of the theory of numbers, Ch. 17, Carnegie Inst. of Washigton, 1919

[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lektsii po matematicheskomu analizu, Drofa, M., 2006, 640 pp.

[7] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, Izd-vo inostr. lit-ry, M., 1961, 212 pp.

[8] Kholl M., Kombinatorika, Izd-vo “Mir”, M., 1970, 424 pp.

[9] Bernulli D., Comment. Acad. Sci. Petrop., 3 (1728), 85–100

[10] Knut D. E., Iskusstvo programmirovaniya, Uch. posobie, v. 1, Osnovnye algoritmy, 3-e izd., Izd. dom “Vilyams”, M., 2000, 720 pp.

[11] de Moivre A., Philos. Trans., 32 (1922), 162–178

[12] Chebyshev P. L., Teoriya veroyatnostei, §23, Izd-vo AN SSSR, 1936, 143–147

[13] Landau E., Osnovy analiza, IL, M., 1947

[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: teoriya i prilozheniya, Nauka, M., 1987, 344 pp.

[15] Mineev M. P., Chubarikov V. N., Lektsii po arifmeticheskim voprosam kriptografii, OOO“Luch”, M., 2014, 224 pp.

[16] Ghyasi A. H., “A generalization of the Gel'fond theorem concerning number systems”, Russian Journal of Mathematical Physics, 2007, no. 3, 370 \bf 14