Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_5_a21, author = {R. R. Mukhin}, title = {Development of the conceptual provisions of the qualitative theory}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {269--290}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a21/} }
R. R. Mukhin. Development of the conceptual provisions of the qualitative theory. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 269-290. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a21/
[1] Sturm Ch. F., “Mémoire sur une classe équations à différences partielles”, J. Math. Pures et Appl., 1 (1836), 373–444
[2] Demidov S., Petrova S. S., Simonov N. N., “Obyknovennye differentsialnye uravneniya”, Matematika XIX v., Nauka, M., 1987, 80–183
[3] Poincaré H., “Memoire sur les courbes définies par une équations differentielle”, J. math. pures et appl. Sér. 3, 7 (1881), 375–422; 8 (1882), 251–296; J. math. pures et appl. Sér. 4, 1 (1885), 167–244; 2 (1886), 151–217; Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M., 1947, 392 pp.
[4] Lyapunov A. M., “Obschaya zadacha ob ustoichivosti dvizheniya”, Izbr. trudy: raboty po teorii ustoichivosti, Nauka, M., 2007, 27–298
[5] Iurato G., The dawning of the theory of equilibrium figures, arXiv: 1409.1823
[6] Jacobi C. G., “Über die Figur des Gleichgewichts”, Ann. Phys. Chem., 33 (1834), 229–233; Gesammelte Werke, v. 2, Verlag von G. Reimer, Berlin, 1882–1891, 17–22
[7] Poincaré H., “Sur l'équilibre d'un masse fluide animée d'un mouvement de rotation”, Acta Math., 7 (1885), 259–380; Oeuvres de Henri Poincaré, VII, Gautier-Villars, Paris, 1952, 40–140
[8] Bogatov E. M., Mukhin R. R., “O razvitii nelineinykh integralnykh uravnenii na rannem etape i vklade otechestvennykh matematikov”, Chebyshevckii sbornik, 22:3 (2021), 312–345
[9] Leibnits V. G., “Izbrannye otryvki iz matematicheskikh sochinenii”, UMN, 3:1(23) (1948), 165–204
[10] Riman B., “Teoriya abelevykh funktsii”, Sochineniya, OGIZ, M.–L., 1948, 88–138
[11] Klein F., “Sravnitelnoe obozrenie noveishikh geometricheskikh predstavlenii (“Erlangenskaya programma”)”, Ob osnovaniyakh geometrii, ed. A. P. Norden, GITTL, M., 1956, 399–434
[12] Euler L., “Elementa doctrinae solidorum”, Euler Archive, 230 (1758), 109–141
[13] Betti E., “Sopra gli spazi di un numero qualunque di dimensioni”, Ann. Math. Pura Appl., 2/4 (1870), 140–158
[14] Jordan C., “Sur la deformation des surfaces”, J. Math. Pures et Appl. II sér., 11 (1866), 1–5
[15] Jordan C., Course d'Analyse, v. III, Paris, 1867, 587–594
[16] Poincaré H., “Analysis situs”, J. Ecole Polytechniques. II sér., 2:1 (1895), 1–121; A. Puankare, Izbr. trudy, V 3 t., Nauka, M., 1972, 454–734
[17] Medvedev F. A., “Osnovopolozhniki funktsionalnogo analiza”, Istor.- mat. issled., XVIII (1973), 55–70
[18] Frechét M., “Généralisation d'un théorème de Weierstrass”, Comp. Ren. Acad. Sci., 139 (1904), 848–850
[19] Frechét M., “Sur la quelques points du Calcul fonctionel”, Rend. Circ. Math. Palermo, 22 (1906), 1–74
[20] Hilbert D., “Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen III”, Nachr. Ges. Wiss. Göttingen, 1905, 307–338
[21] Banach S., “Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales”, Fund. Math., 3 (1923), 123–181
[22] Banach S., Théorie des opértaions linéaires, Warrzawa, 1932, 259 pp.
[23] Brouwer L. E. J., “Über ein eindeutige, stetige Transformationen von Flächen in sich”, J. Math. Ann., 69 (1910), 176–180
[24] Schauder J., “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Zeitschr., 26 (1927), 47–65; 417–431
[25] Schauder J., “Über lineare, vollstetige Operationen”, Studia. Math., 2 (1930), 183–196
[26] Leray J., Schauder J., “Topologie et équations fonctionelles”, Ann. Ec. Norm. Sup., 51:3 (1934), 43–78
[27] Bernulli Ya., O zakone bolshikh chisel, Nauka, M., 1986, 176 pp.
[28] Kolmogorov A. N., “Obschaya teoriya mery i ischislenie veroyatnostei”, Kommun. akademiya, Sb. rabot matem. razdela, v. 1, 1929, 8–21
[29] Kolmogorov A. N., Grundbegriffe der Wahrscheinlichkeitsrehung, Springer-Verl., Berlin, 1933, 62 pp.
[30] Birkhoff G. D., Dynamical Systems, AMS, Providence, Rhod Island, 1927, ix+295 pp.; Dzh. Birkgof, Dinamicheskie sistemy, Per. s angl., RKhD, Izhevsk, 1999, 408 pp.
[31] Puankare A., Izbr. trudy, V 3 t., v. 1, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 772 pp.; т. 2, 1972, 998 с.
[32] Hopf E., Ergodentheorie, Springer-Verl., Berlin, 1937, iv+835 pp.; Хопф Э., “Эргодическая теория”, УМН, 4:1 (1949), 113–182
[33] Neumann J. von, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. Amer., 18 (1932), 70–82
[34] Birkhoff G. D., “Proof of recurrence theorem for strongly transitive systems and proof of the ergodic theorem”, Proc. Nat. Acad. Sci. Amer., 17 (1931), 650–660
[35] Kryloff N., Bogoliouboff N., “La théorie générale de la mesure dans son applications a l'étude des système dynamiques de la mécanique non lineaire”, Ann. Math., 38 (1937), 65–113; N.N.Bogolyubov, Izbr. trudy, v. 1, Naukova dumka, Kiev, 1969, 411–463
[36] Gibbs Dzh. V., “Osnovnye printsipy statisticheskoi mekhaniki”, Termodinamika. Statisticheskaya mekhanika, Nauka, M., 1982, 350–509
[37] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984, 272 pp.
[38] Rokhlin V. A., “Obobschenie sokhranyayuschego meru preobrazovaniya, ne yavlyayuschegosya peremeshivaniem”, DAN SSSR, 13 (1949), 329–340
[39] Kolmogorov A. N., “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, DAN SSSR, 119:5 (1958), 861–864
[40] Kolmogorov A. N., “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, DAN SSSR, 124:4 (1959), 754–755
[41] Sinai Ya. G., Pismennoe soobschenie ot 26.03.2007
[42] Sinai Ya. G., “O ponyatii entropii dinamicheskoi sistemy”, DAN SSSR, 124:4 (1959), 768–771
[43] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112
[44] Kolmogorov A. N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Proc. Intern. Congr. Math. (Amsterdam, 1954), v. 1, 315–333; А.Н.Колмогоров, Математика и механика, Наука, М., 1985, 316–332
[45] Moser J., “A new technique for the construction of solutions of nonlinear differential equations”, Proc. Nat. Acad. Sci. USA, 47 (1961), 1824–1831
[46] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhrwanenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (1963), 13–40
[47] Anosov D. V., “O razvitii teorii dinamicheskikh sistem za poslednyuyu chetvert veka”, Studencheskie chteniya MK NMU, 1, MTsNMO, M., 2000, 74–192
[48] Anosov D. V., “Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya”, Matematicheskie sobytiya KhKh veka, Fazis, M., 2003, 1–18
[49] Iokkoz Zh. K., “Nedavnee razvitie dinamiki”, Mezhdunarodnyi kongress matematikov v Tsyurikhe, Izbran. doklady, Mir, M., 1999, 349–380
[50] Bour J., “Sur l'integration des équations différentielles de la Mécanique Analytic”, J. Math. Pure et Appl., 20 (1855), 185–200
[51] Liouville J., “Remarques nouvelles sur l'équation de Riccati”, J. Math. Pures et Appl., 1841, 1–13
[52] Liouville J., “Note à l'occasion du memoire précident de M. Edmond Bour”, J. Math. Pure et Appl., 20 (1855), 201–202
[53] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67
[54] Kozlov V. V., Simmetriya, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurt. un-ta, Izhevsk, 1995, 430 pp.
[55] Fermi E., “Beweis dass ein Mechnisches Normalsystem in Allgemeinen Quasi-ergodisch ist”, Phys. Zs., 24 (1923), 261–265; E. Fermi, Nauch. trudy, v. 1, Nauka, M., 1971, 115–123
[56] Fermi E., Pasta J., Ulam S., Studies of Nonlinear Problems. I, Los Alamos Report, LA, 1940; E. Fermi, Nauch. trudy, v. 2, Nauka, M., 1972, 647–656
[57] Zabusky N. J., Kruskal M. D., “Interaction of solitons in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15 (1965), 240–243
[58] Solitony, Mir, M., 1983, 408 pp.
[59] Gelfand I. M., “Ob ellipticheskikh uravneniyakh”, UMN, 15:3 (93) (1960), 121–132
[60] Shvarts A. S., Kvantovaya teoriya polya i topologiya, URSS, M., 400 pp.
[61] Atiyah M., Singer I. M., “The index of elliptic operators on compact manifolds”, Bull. AMS, 69:3 (1963), 422–433
[62] Alvarez-Gaume L., “Supersymmetry and the Atiyah-Singer Index Theorem”, Comm. Math. Phys., 90 (1983), 161–173
[63] Monastyrskii M. I., Sovremennaya matematika v otbleske medalei Fildsa, Yanus-K, M., 2000, 200 pp.
[64] Singer I. M., “Future extensions of index theory and elliptic operators”, Prosp. Math. Ann. Math. Soc., 1971, no. 70, 171–185
[65] Atiyah M., “The Dirac equation and geometry”, Paul Dirac. The Man and his Work, CUP, Cambridge, 1998, 108–124
[66] “Atiyah and Singer Receive 2004 Abel Prize”, Notices AMS, 51:6 (2004), 649–650
[67] Donaldson S., “Self-dual connections and the topology of smooth 4-manifolds”, Bull. AMS, 8 (1983), 81–83
[68] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, OUP, Oxford, 1990, 440 pp.
[69] Burbaki N., Ocherki po istorii matematiki, Izd-vo inostr. literatury, M., 1963, 292 pp.
[70] Atiyah M., “Trends in Pure Mathematics”, Proc. 3rd Int. Congr. In Math. Education, 1977, 61–74
[71] Prigozhin I., Ot suschestvuyuschego k voznikayuschemu: Vremya i slozhnost v fizicheskikh naukakh, Nauka, M., 1985, 328 pp.
[72] Lotman Yu. M., Semiosfera, «Iskusstvo-SPB», S.-Peterburg, 2000, 704 pp.