Development of the conceptual provisions of the qualitative theory
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 269-290.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of the evolution of the main provisions of the qualitative theory, under the sign of which the development of all mathematics of the twentieth century took place. In the development of qualitative theory there are several stages with clearly defined trends: the formation of a qualitative theory, when new approaches, a new language and a system of concepts were formed (late 19th – 20s of the 20th century); the next stage is the widespread use of methods of topology and functional analysis, probabilistic representations and the expansion of qualitative theory with the allocation of independent areas (late 1920s – mid-twentieth century); from the middle of the twentieth century to the present – the modern stage. It is distinguished by the fact that the idea of mathematics as a single science was embodied in the qualitative theory. Qualitative theory has absorbed the ideas and methods of various branches (topology, functional analysis, the theory of Lie groups, etc.). The unifying role of a qualitative theory is that it embodies two cultures in mathematics, one of them is aimed at solving problems, and the other – at building and comprehending theories. In this respect, qualitative theory is not just a specific branch, but a peculiar approach to mathematical problems. A feature of the present stage is the still unprecedented convergence with the field of applications, especially with physics. Physics is not just a consumer, it has stimulated fundamental changes in mathematics itself. It becomes difficult to draw a distinguishable boundary between some branches of mathematics and theoretical physics. Qualitative theory has transformed the face of all mathematics and its applications.
Keywords: qualitative theory, topology, topological invariance, dynamical system, local and global description.
@article{CHEB_2022_23_5_a21,
     author = {R. R. Mukhin},
     title = {Development of the conceptual provisions of the qualitative theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {269--290},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a21/}
}
TY  - JOUR
AU  - R. R. Mukhin
TI  - Development of the conceptual provisions of the qualitative theory
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 269
EP  - 290
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a21/
LA  - ru
ID  - CHEB_2022_23_5_a21
ER  - 
%0 Journal Article
%A R. R. Mukhin
%T Development of the conceptual provisions of the qualitative theory
%J Čebyševskij sbornik
%D 2022
%P 269-290
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a21/
%G ru
%F CHEB_2022_23_5_a21
R. R. Mukhin. Development of the conceptual provisions of the qualitative theory. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 269-290. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a21/

[1] Sturm Ch. F., “Mémoire sur une classe équations à différences partielles”, J. Math. Pures et Appl., 1 (1836), 373–444

[2] Demidov S., Petrova S. S., Simonov N. N., “Obyknovennye differentsialnye uravneniya”, Matematika XIX v., Nauka, M., 1987, 80–183

[3] Poincaré H., “Memoire sur les courbes définies par une équations differentielle”, J. math. pures et appl. Sér. 3, 7 (1881), 375–422; 8 (1882), 251–296; J. math. pures et appl. Sér. 4, 1 (1885), 167–244; 2 (1886), 151–217; Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, GITTL, M., 1947, 392 pp.

[4] Lyapunov A. M., “Obschaya zadacha ob ustoichivosti dvizheniya”, Izbr. trudy: raboty po teorii ustoichivosti, Nauka, M., 2007, 27–298

[5] Iurato G., The dawning of the theory of equilibrium figures, arXiv: 1409.1823

[6] Jacobi C. G., “Über die Figur des Gleichgewichts”, Ann. Phys. Chem., 33 (1834), 229–233; Gesammelte Werke, v. 2, Verlag von G. Reimer, Berlin, 1882–1891, 17–22

[7] Poincaré H., “Sur l'équilibre d'un masse fluide animée d'un mouvement de rotation”, Acta Math., 7 (1885), 259–380; Oeuvres de Henri Poincaré, VII, Gautier-Villars, Paris, 1952, 40–140

[8] Bogatov E. M., Mukhin R. R., “O razvitii nelineinykh integralnykh uravnenii na rannem etape i vklade otechestvennykh matematikov”, Chebyshevckii sbornik, 22:3 (2021), 312–345

[9] Leibnits V. G., “Izbrannye otryvki iz matematicheskikh sochinenii”, UMN, 3:1(23) (1948), 165–204

[10] Riman B., “Teoriya abelevykh funktsii”, Sochineniya, OGIZ, M.–L., 1948, 88–138

[11] Klein F., “Sravnitelnoe obozrenie noveishikh geometricheskikh predstavlenii (“Erlangenskaya programma”)”, Ob osnovaniyakh geometrii, ed. A. P. Norden, GITTL, M., 1956, 399–434

[12] Euler L., “Elementa doctrinae solidorum”, Euler Archive, 230 (1758), 109–141

[13] Betti E., “Sopra gli spazi di un numero qualunque di dimensioni”, Ann. Math. Pura Appl., 2/4 (1870), 140–158

[14] Jordan C., “Sur la deformation des surfaces”, J. Math. Pures et Appl. II sér., 11 (1866), 1–5

[15] Jordan C., Course d'Analyse, v. III, Paris, 1867, 587–594

[16] Poincaré H., “Analysis situs”, J. Ecole Polytechniques. II sér., 2:1 (1895), 1–121; A. Puankare, Izbr. trudy, V 3 t., Nauka, M., 1972, 454–734

[17] Medvedev F. A., “Osnovopolozhniki funktsionalnogo analiza”, Istor.- mat. issled., XVIII (1973), 55–70

[18] Frechét M., “Généralisation d'un théorème de Weierstrass”, Comp. Ren. Acad. Sci., 139 (1904), 848–850

[19] Frechét M., “Sur la quelques points du Calcul fonctionel”, Rend. Circ. Math. Palermo, 22 (1906), 1–74

[20] Hilbert D., “Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen III”, Nachr. Ges. Wiss. Göttingen, 1905, 307–338

[21] Banach S., “Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales”, Fund. Math., 3 (1923), 123–181

[22] Banach S., Théorie des opértaions linéaires, Warrzawa, 1932, 259 pp.

[23] Brouwer L. E. J., “Über ein eindeutige, stetige Transformationen von Flächen in sich”, J. Math. Ann., 69 (1910), 176–180

[24] Schauder J., “Zur Theorie stetiger Abbildungen in Funktionalräumen”, Math. Zeitschr., 26 (1927), 47–65; 417–431

[25] Schauder J., “Über lineare, vollstetige Operationen”, Studia. Math., 2 (1930), 183–196

[26] Leray J., Schauder J., “Topologie et équations fonctionelles”, Ann. Ec. Norm. Sup., 51:3 (1934), 43–78

[27] Bernulli Ya., O zakone bolshikh chisel, Nauka, M., 1986, 176 pp.

[28] Kolmogorov A. N., “Obschaya teoriya mery i ischislenie veroyatnostei”, Kommun. akademiya, Sb. rabot matem. razdela, v. 1, 1929, 8–21

[29] Kolmogorov A. N., Grundbegriffe der Wahrscheinlichkeitsrehung, Springer-Verl., Berlin, 1933, 62 pp.

[30] Birkhoff G. D., Dynamical Systems, AMS, Providence, Rhod Island, 1927, ix+295 pp.; Dzh. Birkgof, Dinamicheskie sistemy, Per. s angl., RKhD, Izhevsk, 1999, 408 pp.

[31] Puankare A., Izbr. trudy, V 3 t., v. 1, Novye metody nebesnoi mekhaniki, Nauka, M., 1971, 772 pp.; т. 2, 1972, 998 с.

[32] Hopf E., Ergodentheorie, Springer-Verl., Berlin, 1937, iv+835 pp.; Хопф Э., “Эргодическая теория”, УМН, 4:1 (1949), 113–182

[33] Neumann J. von, “Proof of the quasi-ergodic hypothesis”, Proc. Nat. Acad. Sci. Amer., 18 (1932), 70–82

[34] Birkhoff G. D., “Proof of recurrence theorem for strongly transitive systems and proof of the ergodic theorem”, Proc. Nat. Acad. Sci. Amer., 17 (1931), 650–660

[35] Kryloff N., Bogoliouboff N., “La théorie générale de la mesure dans son applications a l'étude des système dynamiques de la mécanique non lineaire”, Ann. Math., 38 (1937), 65–113; N.N.Bogolyubov, Izbr. trudy, v. 1, Naukova dumka, Kiev, 1969, 411–463

[36] Gibbs Dzh. V., “Osnovnye printsipy statisticheskoi mekhaniki”, Termodinamika. Statisticheskaya mekhanika, Nauka, M., 1982, 350–509

[37] Zaslavskii G. M., Stokhastichnost dinamicheskikh sistem, Nauka, M., 1984, 272 pp.

[38] Rokhlin V. A., “Obobschenie sokhranyayuschego meru preobrazovaniya, ne yavlyayuschegosya peremeshivaniem”, DAN SSSR, 13 (1949), 329–340

[39] Kolmogorov A. N., “Novyi metricheskii invariant tranzitivnykh dinamicheskikh sistem i avtomorfizmov prostranstv Lebega”, DAN SSSR, 119:5 (1958), 861–864

[40] Kolmogorov A. N., “Ob entropii na edinitsu vremeni kak metricheskom invariante avtomorfizmov”, DAN SSSR, 124:4 (1959), 754–755

[41] Sinai Ya. G., Pismennoe soobschenie ot 26.03.2007

[42] Sinai Ya. G., “O ponyatii entropii dinamicheskoi sistemy”, DAN SSSR, 124:4 (1959), 768–771

[43] Pesin Ya. B., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, UMN, 32:4 (1977), 55–112

[44] Kolmogorov A. N., “Obschaya teoriya dinamicheskikh sistem i klassicheskaya mekhanika”, Proc. Intern. Congr. Math. (Amsterdam, 1954), v. 1, 315–333; А.Н.Колмогоров, Математика и механика, Наука, М., 1985, 316–332

[45] Moser J., “A new technique for the construction of solutions of nonlinear differential equations”, Proc. Nat. Acad. Sci. USA, 47 (1961), 1824–1831

[46] Arnold V. I., “Dokazatelstvo teoremy A. N. Kolmogorova o sokhrwanenii uslovno-periodicheskikh dvizhenii pri malom izmenenii funktsii Gamiltona”, UMN, 18:5 (1963), 13–40

[47] Anosov D. V., “O razvitii teorii dinamicheskikh sistem za poslednyuyu chetvert veka”, Studencheskie chteniya MK NMU, 1, MTsNMO, M., 2000, 74–192

[48] Anosov D. V., “Dinamicheskie sistemy v 60-e gody: giperbolicheskaya revolyutsiya”, Matematicheskie sobytiya KhKh veka, Fazis, M., 2003, 1–18

[49] Iokkoz Zh. K., “Nedavnee razvitie dinamiki”, Mezhdunarodnyi kongress matematikov v Tsyurikhe, Izbran. doklady, Mir, M., 1999, 349–380

[50] Bour J., “Sur l'integration des équations différentielles de la Mécanique Analytic”, J. Math. Pure et Appl., 20 (1855), 185–200

[51] Liouville J., “Remarques nouvelles sur l'équation de Riccati”, J. Math. Pures et Appl., 1841, 1–13

[52] Liouville J., “Note à l'occasion du memoire précident de M. Edmond Bour”, J. Math. Pure et Appl., 20 (1855), 201–202

[53] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67

[54] Kozlov V. V., Simmetriya, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo Udmurt. un-ta, Izhevsk, 1995, 430 pp.

[55] Fermi E., “Beweis dass ein Mechnisches Normalsystem in Allgemeinen Quasi-ergodisch ist”, Phys. Zs., 24 (1923), 261–265; E. Fermi, Nauch. trudy, v. 1, Nauka, M., 1971, 115–123

[56] Fermi E., Pasta J., Ulam S., Studies of Nonlinear Problems. I, Los Alamos Report, LA, 1940; E. Fermi, Nauch. trudy, v. 2, Nauka, M., 1972, 647–656

[57] Zabusky N. J., Kruskal M. D., “Interaction of solitons in a collisionless plasma and the recurrence of initial states”, Phys. Rev. Lett., 15 (1965), 240–243

[58] Solitony, Mir, M., 1983, 408 pp.

[59] Gelfand I. M., “Ob ellipticheskikh uravneniyakh”, UMN, 15:3 (93) (1960), 121–132

[60] Shvarts A. S., Kvantovaya teoriya polya i topologiya, URSS, M., 400 pp.

[61] Atiyah M., Singer I. M., “The index of elliptic operators on compact manifolds”, Bull. AMS, 69:3 (1963), 422–433

[62] Alvarez-Gaume L., “Supersymmetry and the Atiyah-Singer Index Theorem”, Comm. Math. Phys., 90 (1983), 161–173

[63] Monastyrskii M. I., Sovremennaya matematika v otbleske medalei Fildsa, Yanus-K, M., 2000, 200 pp.

[64] Singer I. M., “Future extensions of index theory and elliptic operators”, Prosp. Math. Ann. Math. Soc., 1971, no. 70, 171–185

[65] Atiyah M., “The Dirac equation and geometry”, Paul Dirac. The Man and his Work, CUP, Cambridge, 1998, 108–124

[66] “Atiyah and Singer Receive 2004 Abel Prize”, Notices AMS, 51:6 (2004), 649–650

[67] Donaldson S., “Self-dual connections and the topology of smooth 4-manifolds”, Bull. AMS, 8 (1983), 81–83

[68] Donaldson S., Kronheimer P., The Geometry of Four-Manifolds, OUP, Oxford, 1990, 440 pp.

[69] Burbaki N., Ocherki po istorii matematiki, Izd-vo inostr. literatury, M., 1963, 292 pp.

[70] Atiyah M., “Trends in Pure Mathematics”, Proc. 3rd Int. Congr. In Math. Education, 1977, 61–74

[71] Prigozhin I., Ot suschestvuyuschego k voznikayuschemu: Vremya i slozhnost v fizicheskikh naukakh, Nauka, M., 1985, 328 pp.

[72] Lotman Yu. M., Semiosfera, «Iskusstvo-SPB», S.-Peterburg, 2000, 704 pp.