Study and use of recursive algorithms in computer science teacher training
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 258-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article substantiates the importance of studying recursion by students of the 44.03.05 Pedagogical education profile of Informatics, as well as by students of the second and ninth enlarged groups associated with IT areas. The works of Esayan A.R. are analyzed, which form the methodological and theoretical basis for teaching students of the Tula State Pedagogical University in the field of construction and use of recursive algorithms. An overview of current research in the field of the formation and development of the mathematical culture of future teachers and specialists in IT areas through the study of recursion, methodological features of the study of recursive algorithms as the basis for the development of the worldview and research skills of students, examples of the effectiveness of the use of recursive constructions and functions in solving practice-oriented tasks. The authors describe the logic of studying the basics of recursion, the principles for selecting the content necessary for the study of this topic by future teachers and specialists in IT areas. The proposed content of the classes is based not only on the theoretical study of the basic concepts of this subject area, but also on the consideration of convincing irrefutable evidence of the existence and beauty of recursive objects of various nature. The study of practical material is proposed to be built in accordance with the didactic principle "from simple to complex": from the simplest recursive algorithms for perception to efficient sorting and search algorithms on dynamic data structures. This approach, according to the authors, allows students to evaluate the significance and effectiveness of recursive methods of information processing and form professional competencies in the development and application of optimal algorithms for solving practice-oriented problems.
Keywords: Recursion, recursive algorithm, recursive function, optimal algorithm, efficiency, information processing, programming, teacher education, computer science teacher training, mathematical culture.
@article{CHEB_2022_23_5_a20,
     author = {Yu. M. Martynyuk and V. S. Vankova and S. V. Danilenko},
     title = {Study and use of recursive algorithms in computer science teacher training},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {258--268},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a20/}
}
TY  - JOUR
AU  - Yu. M. Martynyuk
AU  - V. S. Vankova
AU  - S. V. Danilenko
TI  - Study and use of recursive algorithms in computer science teacher training
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 258
EP  - 268
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a20/
LA  - ru
ID  - CHEB_2022_23_5_a20
ER  - 
%0 Journal Article
%A Yu. M. Martynyuk
%A V. S. Vankova
%A S. V. Danilenko
%T Study and use of recursive algorithms in computer science teacher training
%J Čebyševskij sbornik
%D 2022
%P 258-268
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a20/
%G ru
%F CHEB_2022_23_5_a20
Yu. M. Martynyuk; V. S. Vankova; S. V. Danilenko. Study and use of recursive algorithms in computer science teacher training. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 258-268. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a20/

[1] Knut D. E., Iskusstvo programmirovaniya, Per s angl., ed. Yu. V. Kozachenko, Vilyams, M., 2007, 712 pp.

[2] Esayan A. R., Obuchenie algoritmizatsii na osnove rekursii, ucheb. posobie dlya studentov ped. vuzov, Izd-vo TGPU im. L. N. Tolstogo, Tula, 2001, 215 pp.

[3] Esayan A. R., Teoriya i metodika obucheniya algoritmizatsii na osnove rekursii v kurse informatiki pedagogicheskogo vuza, dis. ... d-ra ped. nauk : 13.00.02 – teoriya i metodika obucheniya i vospitaniya (po oblastyam i urovnyam obrazovaniya), Tula, 2001, 363 pp.

[4] Esayan A. R., “Znaniya, umeniya i navyki, svyazannye s rekursiei”, Pedagogika kak nauka i kak uchebnyi predmet, tez. dokladov mezhdunar. nauchn.-prakt. konf., izd-vo TGPU im. L. N. Tolstogo, Tula, 2000, 100–104

[5] Esayan A. R., “Rekursiya kak obscheobrazovatelnaya tsennost”, Obrazovanie kak tsennost, sb. nauch. tr. aspirantov i doktorantov, izd-vo TGPU im. L.N.Tolstogo, Tula, 1998, 21–35

[6] Esayan A. R., “Reshenie zadach s pomoschyu rekursii”, Sovremennye problemy matematiki, mekhaniki, informatiki, tezisy dokladov Vserossiiskoi nauchnoi konferentsii, izd-vo TulGU, Tula, 2000, 140–141

[7] Dobrovolskaya N. Yu., Gumerov A. E., “Izuchenie rekursivnykh algoritmov s primeneniem metoda issledovanii”, Zadachi v obuchenii matematike, fizike i informatike: teoriya, opyt, innovatsii, materialy II Mezhdunarodnoi nauchno-prakticheskoi konferentsii, posvyaschennoi 125-letiyu P. A. Laricheva, izd-vo: IP Kiselev A. V., Vologda, 2017, 317–319

[8] Machkova N. V., “Razvivayuschee obuchenie i rekursiya”, II Mezhdunarodnaya nauchno-issledovatelskaya konferentsiya po informatike i informatsionnym i kommunikatsionnym tekhnologiyam “INFO-ekspert”-2016, sbornik nauchno-issledovatelskikh rabot, Fond sodeistviya razvitiyu internet-media, IT-obrazovaniya, chelovecheskogo potentsiala “Liga internet-media”, Elets, 2016, 83–87

[9] Mirzoev M. S., “Mezhpredmetnye svyazi matematicheskikh distsiplin s informatikoi kak osnova formirovaniya matematicheskoi kultury buduschego uchitelya informatiki”, Prepodavatel XXI vek, 2008, no. 3, 7–15

[10] Mirzoev M. S., “Rekursivnyi metod kak osnova formirovaniya i razvitiya matematicheskoi kultury buduschikh uchitelei informatiki”, Nauka i shkola, 2007, no. 1, 33–35

[11] Madudin V. N., Morozova E. V., Safronova I. V., “Osobennosti soderzhaniya matematicheskikh distsiplin pri podgotovke bakalavrov prikladnoi informatiki”, Bakalavriat prikladnoi informatiki: praktika realizatsii osnovnoi obrazovatelnoi programmy, monografiya, Uralskii gosudarstvennyi universitet fizicheskoi kultury, Chelyabinsk, 2020, 109–115

[12] Sergeev R. S., “Rekursiya kak fenomen modelirovaniya ob'ektov i yavlenii realnogo mira”, Inzhenernaya mysl, sbornik dokladov V Gorodskoi nauchno-prakticheskoi konferentsii, posvyaschennoi godu nauki i tekhnologii, Kazanskii gosudarstvennyi tekhnicheskii universitet im. A.N. Tupoleva, Kazan, 2021, 83–85

[13] Zhukov A. O., “Prognozirovanie rasprostraneniya COVID-19 na osnove rekursivnykh modelei”, European Scientific Conference, sbornik statei XX Mezhdunarodnoi nauchno-prakticheskoi konferentsii, Nauka i Prosveschenie, Penza, 2020, 45–48

[14] Esayan A. R., Obuchenie algoritmizatsii na osnove rekursii, Ucheb. posobie dlya studentov ped. Vuzov, Izd-vo TGPU im. L. N. Tolstogo, Tula, 2001, 216 pp.

[15] Esayan A. R., Rekursiya v informatike, Uchebnoe posobie dlya studentov pedagogicheskikh vuzov: V 4 chastyakh, izd-vo TGPU im. L. N. Tolstogo, Tula, 2000