Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_5_a19, author = {S. N. Kutepov and A. E. Gvozdev and O. V. Kuzovleva and D. S. Klementyev}, title = {On the behavior of hydrogen in metal alloys}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {241--257}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a19/} }
TY - JOUR AU - S. N. Kutepov AU - A. E. Gvozdev AU - O. V. Kuzovleva AU - D. S. Klementyev TI - On the behavior of hydrogen in metal alloys JO - Čebyševskij sbornik PY - 2022 SP - 241 EP - 257 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a19/ LA - ru ID - CHEB_2022_23_5_a19 ER -
S. N. Kutepov; A. E. Gvozdev; O. V. Kuzovleva; D. S. Klementyev. On the behavior of hydrogen in metal alloys. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 241-257. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a19/
[1] S.M. Myers, M.I. Baskes, H.K. Birn-baum, J.W. Corbett, G.G. DeLeo, S.K. Estreicher, E.E. Mailer, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, M.J. Stavola, “Hydrogen interactions with defects in crystalline solids”, Rev. Mod. Phys., 64:2 (1992), 559–617
[2] Sergeev N.N., Kutepov S.N., “O vzaimodeistvii vodoroda s defektami kristallicheskoi reshetki v metallakh i splavakh”, Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2017, no. 4, 131–141
[3] E.A. Denisov, T.N. Kompaniets, M.A. Murzinova, A.A. Yukhimchuk (ml.), “Nakoplenie i transport vodoroda v ferritno-martensitnoi stali RUSFER-EK-181”, Zhurnal tekhnicheskoi fiziki, 83:6 (2013), 38–44
[4] N.N. Sergeev, A.N. Chukanov, V.P. Baranov, A.A. Yakovenko, “Razvitie povrezhdaemosti i obezuglerozhivanie vysokoprochnykh nizkolegirovannykh stalei v usloviyakh vodorodnogo okhrupchivaniya”, Metallovedenie i termicheskaya obrabotka metallov, 2015, no. 2, 4–9
[5] Dabah E., Lisitsyn V., Eliezer D., “Performance of hydrogen trapping and phase transformation in hydrogenated duplex stainless steels”, Mater. Sci. Eng., A, 527 (2010), 4851–4857
[6] Bernstein I.M., Pressouyre G.M., “The role of traps in the microstructural control of hydrogen embrittlement of steels”, Hydrogen degradation of ferrous alloys, eds. R.A. Oriani, J.P. Hirth, M. Smialowski, Noyes Publications, New Jersey, 1985, 641–685
[7] Pressouyre G.M., Bernstein I.M., “An example of the effect of hydrogen trapping on hydrogen embrittlement”, Metall. Trans. A, 12 (1981), 835–844
[8] McNabb A., Foster P.K., “A new analysis of the diffusion of hydrogen in iron and ferritic steels”, Trans. Met. Soc. AIME, 227:3 (1963), 618–627
[9] Lee H.G., Lee J.Y., “Hydrogen trapping by TiC particles in iron”, Acta Metall., 32 (1984), 131–136
[10] Johnson H.H., “Hydrogen in iron”, Metall. Trans. A, 19 (1988), 691–707
[11] Iino M., “Hydrogen-defect interactions and hydrogen-induced embrittlement in iron, steel and other metals”, Proceedings of Conference on Hydrogen and Materials (Beijing, China, 9-13 May, 1988), 1–8
[12] Oriani R.A., “The diffusion and trapping of hydrogen in steel”, Acta Metall, 18 (1970), 147–157
[13] Pressouyre G.M., Bernstein I.M., “A kinetic trapping model for hydrogen-induced cracking”, Acta Metall, 27 (1979), 89–100
[14] Pressouyre G.M., “A classification of hydrogen traps in steel”, Metall. Trans. A, 10 (1979), 1571–1573
[15] Hirth J.P., “Effects of hydrogen on the properties of iron and steel”, Metall. Trans. A, 11 (1980), 861–890
[16] Pressouyre G.M., “Trap theory of hydrogen embrittlement”, Acta Metall, 28 (1980), 895–911
[17] N.N. Sergeev, A.N. Sergeev, S.N. Kutepov, A.E. Gvozdev, N.E. Starikov, O.V. Pantyukhin, “Ispolzovanie vodorodnykh lovushek dlya kontrolya protsessa vodorodnogo rastreskivaniya svarnykh soedinenii vysokoprochnykh stalei”, Izvestiya Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki, 2018, no. 4, 344–356
[18] Troiano A.R., “The role of hydrogen and other interstitials in the mechanical behavior of metals”, Trans. of The ASM, 52 (1960), 54–80
[19] Weinstein M., Elliott J.F., “Solubility of hydrogen in liquid iron alloys”, Trans. Met. Soc. AIME, 227:3 (1963), 382–393
[20] Sigworth G.K., Elliot J.F., “The thermodynamics of liquid dilute iron alloys”, Met. Sci., 8 (1974), 298–310
[21] Mabuchi H., Nakao H., “The effects of excess aluminum on mechanical properties of Mn-Mo, Mn-Mo-Ni and Mn-Mo-Ni-Cr steels with regard to solute interactions”, Trans. ISIJ, 23 (1983), 504–512
[22] Oates W.A., Flanagan T.B., “The Solubility of Hydrogen in Transition Metals and Their Alloys”, Prog. Solid State Chem., 13:3 (1981), 193–283
[23] Olson D.L., Maroef I., Lensing C., Smith D., Wildeman T., Eberhart M., Hydrogen Management in Steel Weldments, eds. J.L. Davidson, D.L. Olson, DSTO and WTIA, Melbourne, Australia, 1996, 1–19
[24] Iino M., “A more generalized analysis of hydrogen trapping”, Acta Metall, 30 (1982), 367–375
[25] Hirth J.P., Lothe J., Theory of dislocations, 2rid ed., Wiley, New York, 1982, 857 pp.
[26] Kutepov S.N., “O nekotorykh aspektakh vzaimodeistviya vodoroda s dislokatsionnymi skopleniyami v metallakh i splavakh”, XIV Rossiiskaya ezhegodnaya konferentsiya molodykh nauchnykh sotrudnikov i aspirantov «Fiziko-khimiya i tekhnologiya neorganicheskikh materialov», Sb. materialov (Moskva. 17-20 oktyabrya 2017 g.), IMET RAN, M., 2016, 42–44
[27] Kirchheim R., Hirth J.P., “Hydrogen adsorption at cracks in Fe, Nb and Pd”, Scr. Metall, 16 (1982), 475–478
[28] Zhang T.-Y., Hack J., “The equilibrium concentration of hydrogen atoms ahead of a mixed mode I-mode III crack tip in single crystal iron”, Metall. Mater. Trans. A, 30 (1999), 155–159
[29] Hirth J.P., Carnahan B., “Hydrogen adsorption at dislocations and cracks in Fe”, Acta Metall, 26 (1978), 1795–1803
[30] R. Valentini, A. Solina, S. Matera, P. Gregorio, “Influence of titanium and carbon contents on the hydrogen trapping of microalloyed steels”, Metall. Mater. Trans. A, 27:12 (1996), 3773–3780
[31] Pressouyre G.M., Bernstein I.M., “A quantitative analysis of hydrogen trapping”, Metall. Trans. A, 9 (1978), 1571–1580
[32] H. G. Lee, J. Y. Lee, “Hydrogen trapping by TiC particles in iron”, Acta Metall, 32 (1984), 131–136
[33] Lee S.M., Lee J.Y., “The trapping and transport phenomena of hydrogen in nickel”, Metall. Mater. Trans. A, 17 (1986), 181–187
[34] Huang X.Y, Mader W., Kirchheim R., “Hydrogen and oxygen at metal/oxide interfaces”, Acta Metall. et Mater., 39:5 (1991), 893–907
[35] McLellan R.B., “Thermodynamics and diffusion behavior of interstitial solute atoms in non-perfect solvent crystals”, Acta Metall, 27 (1979), 1655–1663
[36] Fromm E., Gebhardt E., Gase und Kohlenstoff in Metallen, Springer-Verlag, Berlin, 1976
[37] R. Kirchheim, “Interaction of hydrogen with dislocations in palladium - II. Interpretation of activity results by a Fermi-Dirac distribution”, Acta Metall, 29:5 (1981), 845–853
[38] Krom A., Bakker A., “Hydrogen trapping models in steel”, Metall. Trans. B, 31 (2000), 1475–1482
[39] Vlasov N.M., Zaznoba V.A., “Vliyanie atomov vodoroda na podvizhnost kraevykh dislokatsii”, Fizika tverdogo tela, 41:3 (1999), 451–453
[40] Kutepov S.N., “Vodorodnoe usilenie lokalizatsii plastichnosti v metallakh i splavakh”, Sb. mater. XIII Rossiiskoi ezhegodnoi konferentsii molodykh nauchnykh sotrudnikov i aspirantov «Fiziko-khimiya i tekhnologiya neorganicheskikh materialov», IMET RAN, M., 2016, 40–41
[41] Nagornykh I.L., Burnyshev I.N., “Molekulyarno-dinamicheskoe modelirovanie povedeniya kraevoi dislokatsii s vodorodnoi atmosferoi Kottrella v alfa-zheleze”, Khimicheskaya fizika i mezoskopiya, 17:1 (2015), 111–116
[42] G.P. Tiwari, A. Bose, J.K. Chakravartty, S.L. Wadekar, M.K. Totlani, R.N. Arya, R.K. Fotedar, “A study of internal hydrogen embrittlement of steels”, Mater. Sci. Eng., A, 286 (2000), 269–281
[43] Koiwa M., “Trapping effect in diffusion of interstitial impurity atoms in BCC lattices”, Acta Metall, 22 (1974), 1259–1268
[44] Luppo M.I., Ovejero-Garcia J., “The influence of microstructure on the trapping and diffusion of hydrogen in a low carbon steel”, Corrosion Science, 32:10 (1991), 1132–1136