Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_5_a18, author = {A. O. Ivanov and G. V. Nosovskiy and V. A. Kibkalo and M. A. Nikulin and F. Yu. Popelensky and D. A. Fedoseev and I. V. Gribushin and V. V. Zlobin and S. S. Kuzin and I. L. Mazurenko}, title = {Recognition of anomalies of an a priori unknown type}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {227--240}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a18/} }
TY - JOUR AU - A. O. Ivanov AU - G. V. Nosovskiy AU - V. A. Kibkalo AU - M. A. Nikulin AU - F. Yu. Popelensky AU - D. A. Fedoseev AU - I. V. Gribushin AU - V. V. Zlobin AU - S. S. Kuzin AU - I. L. Mazurenko TI - Recognition of anomalies of an a priori unknown type JO - Čebyševskij sbornik PY - 2022 SP - 227 EP - 240 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a18/ LA - ru ID - CHEB_2022_23_5_a18 ER -
%0 Journal Article %A A. O. Ivanov %A G. V. Nosovskiy %A V. A. Kibkalo %A M. A. Nikulin %A F. Yu. Popelensky %A D. A. Fedoseev %A I. V. Gribushin %A V. V. Zlobin %A S. S. Kuzin %A I. L. Mazurenko %T Recognition of anomalies of an a priori unknown type %J Čebyševskij sbornik %D 2022 %P 227-240 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a18/ %G ru %F CHEB_2022_23_5_a18
A. O. Ivanov; G. V. Nosovskiy; V. A. Kibkalo; M. A. Nikulin; F. Yu. Popelensky; D. A. Fedoseev; I. V. Gribushin; V. V. Zlobin; S. S. Kuzin; I. L. Mazurenko. Recognition of anomalies of an a priori unknown type. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 227-240. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a18/
[1] Falkoner K., Fractal geometry: mathematical foundations and applications, John Wiley Sons, Chichester etc., 1990, xxii + 288 pp.
[2] Defard T., Setkov A., Loesch A., Audigier R., PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization, 2020, arXiv: 2011.08785
[3] Realization of PaDiM approach, https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master
[4] Bergmann P., Batzner K., Fauser M., Sattlegger D., Steger C., “The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection”, International Journal of Computer Vision, 129 (2021), 1038–1059
[5] Venturini G. M., Statistical Distances and Probability Metrics for Multivariate Data, Ensembles and Probability Distributions, Ph.D. THESIS (advisor: Alberto Munoz Garcia), Dep. of Statistics, Univ. Carlos III, Leganes, Madrid, Spain, June 2015
[6] Grudic G. Z., Mulligan J., “Outdoor Path Labeling Using Polynomial Mahalanobis Distance”, Robotics: Science and Systems II (August 16-19, 2006, University of Pennsylvania, Philadelphia, Pennsylvania, USA)
[7] Shapiro S. S., Wilk M. B., “An analysis of variance test for normality (complete samples)”, Biometrica, 52 (1965), 591–611
[8] Ivanov A., Nosovskiy G., Chekunov A., Fedoseev D., Kibkalo V., Nikulin M., Popelenskiy F., Komkov S., Mazurenko I., Petiushko A., Manifold Hypothesis in Data Analysis: Double Geometrically-Probabilistic Approach to Manifold Dimension Estimation, 2021, arXiv: 2107.03903 [cs.LG]
[9] Stolz B., Tanner J., Harrington H., Nanda V., “Geometric anomaly detection in data”, Proceedings of the National Academy of Sciences, 117 (2020), 202001741 | DOI
[10] Erba V., Gherardi M., Rotondo P., “Intrinsic dimension estimation for locally undersampled data”, Sci. Rep., 9 (2019) | DOI
[11] Fefferman C., Mitter S., Narayanan H., “Testing the manifold hypothesis”, J. Amer. Math. Soc., 29 (2016) | DOI
[12] Bernstein A., Burnaev E., Erofeev P., “Manifold Reconstruction in Dimension Reduction Problem”, International conference “Intelligent Information Processing” IIP-9, 2012
[13] Grassberger P., Procaccia I., “Measuring the strangeness of strange attractors”, Physica D: Nonlinear Phenomena, 9 (1983), 189–208
[14] Eckmann J.-P., Ruelle D., “Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems”, Physica D: Nonlinear Phenomena, 56 (1992), 185–187
[15] Mordohai P., Medioni G., “Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting”, Journal of Machine Learning Research, 11 (2010), 411–450
[16] He J., Jiang L., Ding L., Ii Z., “Intrinsic Dimensionality Estimation based on Manifold Assumption”, Journal of Visual Communication and Image Representation, 25:5 (2014), 740–747
[17] Granata D., Carnevale V., “Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets”, Sci. Rep., 6 (2016) | DOI
[18] Levina E., Bickel P. J., “Maximum likelihood estimation of intrinsic dimension”, Advances in neural information processing systems, 2005, 777–784