Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_5_a17, author = {N. N. Dobrovol'skii and S. A. Skobel'tsyn and L. A. Tolokonnikov and N. V. Larin}, title = {Application of number-theoretic grids in problems of sound diffraction by elastic bodies}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {206--226}, publisher = {mathdoc}, volume = {23}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a17/} }
TY - JOUR AU - N. N. Dobrovol'skii AU - S. A. Skobel'tsyn AU - L. A. Tolokonnikov AU - N. V. Larin TI - Application of number-theoretic grids in problems of sound diffraction by elastic bodies JO - Čebyševskij sbornik PY - 2022 SP - 206 EP - 226 VL - 23 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a17/ LA - ru ID - CHEB_2022_23_5_a17 ER -
%0 Journal Article %A N. N. Dobrovol'skii %A S. A. Skobel'tsyn %A L. A. Tolokonnikov %A N. V. Larin %T Application of number-theoretic grids in problems of sound diffraction by elastic bodies %J Čebyševskij sbornik %D 2022 %P 206-226 %V 23 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a17/ %G ru %F CHEB_2022_23_5_a17
N. N. Dobrovol'skii; S. A. Skobel'tsyn; L. A. Tolokonnikov; N. V. Larin. Application of number-theoretic grids in problems of sound diffraction by elastic bodies. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 206-226. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a17/
[1] D. Kolton, R. Kress, Metody integralnykh uravnenii v teorii rasseyaniya, Mir, M., 1987, 311 pp.
[2] S. Kirkup, “The Boundary Element Method in Acoustics: A Survey”, Appl. Sci., 9 (2019), 1642
[3] S. M. Rao, “An iterative method to solve acoustic scattering problems using a boundary integral equation”, J. Acoust. Soc. Am., 130:4 (2011), 1792–1798
[4] J. A. Fawcett, “Scattering from a finite cylinder near an interface”, J. Acoust. Soc. Am., 136:2 (2014), 485–493
[5] A. M. A. Alsnayyan, J. Li, S. Hughey, A. Diaz, B. Shanker, “Efficient isogeometric boundary element method for analysis of acoustic scattering from rigid bodies”, J. Acoust. Soc. Am., 147:5 (2020), 3275–3284
[6] K. Brebbiya, Zh. Telles, L. Vroubel, Metody granichnykh elementov, Mir, M., 1987, 524 pp.
[7] E. L. Shenderov, Izluchenie i rasseyanie zvuka, Sudostroenie, L., 1989, 304 pp.
[8] N. N. Dobrovolskii, S. A. Skobeltsyn, L. A. Tolokonnikov, N. V. Larin, “O primenenii teoretiko-chislovykh setok v zadachakh akustiki”, Chebyshevskii sbornik, 22:3 (2021), 368–382
[9] I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, “O klassicheskikh teoretiko-chislovykh setkakh”, Chebyshevckii sbornik, 19:4 (2018), 118–176
[10] N. M. Korobov, “Primenenie teoretiko-chislovykh setok v integralnykh uravneniyakh i interpolyatsionnykh formulakh”, Sbornik statei. Posvyaschaetsya akademiku Mikhailu Alekseevichu Lavrentevu k ego shestidesyatiletiyu, Tr. MIAN SSSR, 60, 1961, 195–210
[11] Yu. N. Shakhov, “O priblizhennom reshenii uravnenii Volterra II roda metodom iteratsii”, Dokl. AN SSSR, 136:6 (1961), 1302–1305
[12] M. Z. Gecmen, E. Celik, “Numerical solution of Volterra-Fredholm integral equations with Hosoya polynomials”, Math. Meth. Appl. Sci., 44 (2021), 11166–11173
[13] W. Shatanawi, N. Mlaiki, D. Rizk, et al., “Fredholm-type integral equation in controlled metric-like spaces”, Adv. Differ. Equ., 358 (2021)
[14] S. C. Buranay, M. A. Ozarslan, S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators”, Mathematics, 9 (2021), 1193
[15] V. A. Bykovskii, “Diskretnoe preobrazovanie Fure i tsiklicheskaya svertka na tselochislennykh reshetkakh”, Dokl. AN SSSR, 302:1 (1988), 11–13
[16] Y. Kolomoitsev, J. Prestin, “Approximation properties of periodic multivariate quasi-interpolation operators”, Journal of Approximation Theory, 270 (2021), 105631
[17] S. C. Buranay, M. A. Ozarslan, S. S. Falahhesar, “Numerical Solution of the Fredholm and Volterra Integral Equations by Using Modified Bernstein-Kantorovich Operators”, Mathematics, 9 (2021), 1193
[18] N. N. Dobrovolskii, “Otklonenie dvumernykh setok Smolyaka”, Chebyshevskii sbornik, 8:1 (2007), 110–152
[19] N. M. Korobov, Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004, 288 pp.
[20] N. M. Dobrovolskii, A. R. Esayan, O. V. Andreeva, N. V. Zaitseva, “Mnogomernaya teoretiko-chislovaya Fure interpolyatsiya”, Chebyshevskii sbornik, 5:1 (2004), 122–143
[21] M. A. Isakovich, Obschaya akustika, Nauka, M., 1973, 496 pp.
[22] V. Novatskii, Teoriya uprugosti, Mir, M., 1975, 872 pp.
[23] E. Skuchik, Osnovy akustiki, v. 1, Mir, M., 1976, 520 pp.
[24] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp.
[25] F. Mors, G. Feshbakh, Metody teoreticheskoi fiziki, v. 2, IL, M., 1960, 886 pp.
[26] P. Benerdzhi, R. Batterfild, Metod granichnykh elementov v prikladnykh naukakh, Mir, M., 1984, 494 pp.
[27] V. D. Kupradze, Metody potentsiala v teorii uprugosti, Fizmatgiz, M., 1963, 473 pp.
[28] G. A. Korn, T. M. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1978, 832 pp.
[29] N. M. Korobov, “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25
[30] J. J. Faran, “Sound scattering by solid cylinders and spheres”, J. Acoust. Soc. Amer., 23:4 (1951), 405–418
[31] L. Flax, G. C. Gaunaurd, H. Überall, “Theory of resonance scattering”, Physical Acoustics, 15, eds. Mason W.P., Thurson R.N., Academic, New York, 1981, 191–294
[32] L. Flax, G. C. Gaunaurd, H. Überall, “Theory of resonance scattering”, Physical Acoustics, 15, eds. Mason W.P., Thurson R.N., Academic, New York, 1981, 191–294