Mots-clés : Hausdorff distance
@article{CHEB_2022_23_5_a12,
author = {A. Kh. Galstyan},
title = {About the continuity of one operation with convex compacts in finite{\textendash}dimensional normed spaces},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {152--160},
year = {2022},
volume = {23},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a12/}
}
A. Kh. Galstyan. About the continuity of one operation with convex compacts in finite–dimensional normed spaces. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 152-160. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a12/
[1] Kantorovich L. V., Matematicheskie metody organizatsii planirovaniya proizvodstva, Izdanie Leningradskogo gosudarstvennogo universiteta, L., 1939, 68 pp.
[2] Akho A. V., Lam M. S., Seti R., Ulman D. D., Kompilyatory: printsipy, tekhnologii i instrumentarii, Per. s angl., 2-e izd., OOO “I. D. Vilyams”, M., 2008, 1184 pp.
[3] Gabasov R., Kirillova F. M., “Metody optimalnogo upravleniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 6, 1976, 133–259
[4] Shevchenko V. N., Zolotykh N. Yu., Lineinoe i tselochislennoe lineinoe programmirovanie, Izdatelstvo Nizhegorodskogo gosuniversiteta im. N.I. Lobachevskogo, Nizhnii Novgorod, 2004, 150 pp.
[5] Lenstra H. W., “Integer Programming with a Fixed Number of Variables”, Mathematics of Operations Research, 8:4 (1983), 538–548
[6] Kannan R., “Minkowski's Convex Body Theorem and Integer Programming”, Mathematics of Operations Research, 12 (1987), 415–440
[7] Glover F., “Tabu search–Part II”, ORSA Journal on Computing, 2:1 (1990), 4–32
[8] Williams H. P., Logic and integer programming, Springer, New York, NY, 2009, 200 pp.
[9] Gardner R. J., Hug D., Weil W., “Operations between sets in geometry”, J. Eur. Math. Soc., 15:6 (2013), 2297–2352
[10] Mendelson B., Introduction to topology, Dover Publications, 1990, 206 pp.
[11] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, Institut kompyuternykh issledovanii, M.-Izhevsk, 2004, 512 pp.
[12] Ivanov A. O., Tuzhilin A. A., Geometriya rasstoyanii Khausdorfa i Gromova-Khausdorfa: sluchai kompaktov, Izdatelstvo Popechitelskogo soveta mekhaniko-matematicheskogo fakulteta MGU, M., 2017, 111 pp.
[13] Alimov A. R., Tsarkov I. G., “Svyaznost i drugie geometricheskie svoistva solnts i chebyshevskikh mnozhestv”, Fundamentalnaya i prikladnaya matematika, 19:4 (2014), 21–91
[14] Leonard I. E., Lewis J. E., Geometry of convex sets, Wiley, 2015, 336 pp.
[15] Galstyan A. Kh., Ivanov A. O., Tuzhilin A. A., “The Fermat–Steiner problem in the space of compact subsets of $\mathbb R^m$ endowed with the Hausdorff metric”, Sb. Math., 212:1 (2021), 25–56